
Burst-tolerant Datacenter Networks with Vertigo
Sepehr Abdous∗, Erfan Sharafzadeh∗, Soudeh Ghorbani

Johns Hopkins University

ABSTRACT
Microsecond-scale congestion events, known as microbursts, are a
main cause of packet loss and poor application performance in to-
day’s datacenters. Given the low network utilization in datacenters,
one would expect packet deflection, in-situ re-routing of packets
that arrive at a full buffer to a different port, to effectively pre-
vent packet loss. However, if deployed naively, deflection leads to
excessive packet re-ordering, exacerbated congestion, and head-of-
the-line blocking in switch buffers. In this study, we resolve the
above challenges by selectively deflecting the packets that cause
persistent congestion in the network. To enable this, we augment
the end-host network stacks with a transport-independent exten-
sion that tracks and marks flows with their remaining bytes. Our
in-network deflection component uses the flow size information
to re-route packets from flows with more data to send. Finally, an
extension to the receive-side of end-host stacks retrieves the correct
ordering of packets before passing them to transport and higher-
level protocols. We evaluate our design, Vertigo, under diverse
datacenter workloads and show that it is effective in managing
microbursts under light and heavy loads and when combined with
various congestion control algorithms. For example, in a leaf-spine
network under 85% load, Vertigo reduces the mean incast query
completion times by 3.5×, 3.3×, 5× compared to ECMP, DRILL, and
DIBS when using TCP, 3×, 3.5×, 4.5× alongside DCTCP, and 43×,
33×, 16× when using Swift, respectively.

CCS CONCEPTS
• Networks → Data center networks.

KEYWORDS
Datacenter networks, Microbursts, Packet deflection

ACM Reference Format:
Sepehr Abdous∗, Erfan Sharafzadeh∗, Soudeh Ghorbani. 2021. Burst-tolerant
Datacenter Networks with Vertigo. In The 17th International Conference on
emerging Networking EXperiments and Technologies (CoNEXT ’21), December
7–10, 2021, Virtual Event, Germany. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3485983.3494873

∗Equal contribution. A coin toss decided the order of the first two authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9098-9/21/12. . . $15.00
https://doi.org/10.1145/3485983.3494873

1 INTRODUCTION
Driven primarily by two trends—the disaggregation of storage,
compute, and memory across the network for cost savings and the
rising demand for high-speed transmission in new technologies
and applications [47, 48]—datacenters today have exceedingly strin-
gent low-latency requirements. To enable resource disaggregation,
remote resources (GPU, memory, disk, etc.) should be accessible
over the network within 3-5µs [48]. In emerging applications and
technologies such as NVMe (non-volatile memory express) and
large-scale machine learning workloads, the network is frequently
the performance bottleneck because their storage and computa-
tion resources are extremely fast [48]. Despite significant progress
towards building ultra-low-latency datacenter networks in recent
years, why does the network continue to remain the performance
bottleneck? A key challenge is reportedly microbursts, short-lived
periods of congestion that last for less than a millisecond and cause
the majority of packet loss in datacenters [15, 48, 76]. The extreme
packet drops caused by microbursts lead to re-transmissions that
impose significant latency and degrade application performance.
Managing microbursts is challenging because of their short lifes-
pans and their diverse and ever-changing root causes (applications,
TCP artifacts such as ACK compression, offloading features in NICs,
etc. [6, 8, 40, 41, 44, 51, 53, 73, 76]). Rack-level traffic measurements
at Facebook, for instance, show that more than 70% of microbursts
last for less than a few tens of microseconds, significantly shorter
than the frequency of most deployed measurement frameworks
[76].

Given by the necessity of reacting to microbursts in situ and in
real-time, a group of proposals attempts to manage microbursts
in the network core, e.g., via balancing the load among multiple
shortest paths [33], deflecting the excess load across neighboring
switches with spare capacity [65, 75], and provisioning enough
buffer space in switches to absorb bursts [13]. Although effective
for small scales and lightly loaded networks, network-centric
techniques fail under load and at scale. Load balancing and
buffer sizing techniques, for example, cannot manage large-scale
incasts where a large number of hosts simultaneously transmit
data to a single receiver [47], because the intensity of the burst
in such cases exceeds the buffer capacity of any single datacenter
switch (commonly shallow buffered) and the number of paths that
the burst can be distributed among. Similarly, deflecting packets
extends their path lengths, e.g., by 20% under 50% offered load (§2),
and increases utilization which exacerbates the congestion if the
network is already overloaded. By preventing packet drops, deflec-
tion further delays informing the hosts that they need to throttle
their send rate. Our experiments show that under 80% load, random
deflection completes 10× fewer incast queries and the average flow
completion times is 45% higher than a simple baseline. Datacenters
today experience a wide range of workloads, scale, and utilization,
including frequent epochs of high utilization and extreme-scale
incast events (thousands of flows arriving simultaneously at the

1

https://doi.org/10.1145/3485983.3494873
https://doi.org/10.1145/3485983.3494873
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

same destination) [43, 47, 48]. For a burst management technique
to be viable, it is an essential necessity that it handles extreme load
gracefully.

On the other hand, given the greater visibility and control over
the sources of traffic at the edge, another group of host-centric
designs strives to proactively identify and prevent the formation of
microbursts at the edge, sometimes with some feedback from the
network (e.g., regarding the queueing delay [48] and congestion
[6]). Adding jitter in the application layer to prevent synchrony
[29], credit-based transport protocols that coordinate and sched-
ule the flows sent to a receiver [30, 35, 56], and feedback-based
congestion control protocols that strive to impede bursts and their
subsequent packet loss by reacting to increasing RTTs and net-
work congestion faster [6, 47, 48, 63] are all examples of designs in
which the hosts play a central role in preventing the formation of
microbursts. Compared to core-centric designs, host-based tech-
niques are fundamentally limited by their slower reaction
to microbursts, typically an RTT or slower.

We advocate co-designing the networking layer in the core and
the edge to make it burst-tolerant. Given that microbursts are ex-
tremely short-lived, the network core should be capable of han-
dling them in real-time and in place, e.g., by distributing microburst
packets across the network. However, to remain efficient under
various degrees of load, the network should distinguish between
microbursts and an overall high degree of load and treat each differ-
ently. For example, while deflecting the packets of a local, transient
burst to other switches when the overall utilization is low improves
flow completion times, dropping them, when the overall load is high,
helps reduce the congestion and improves performance. Making
such distinctions can be greatly facilitated with some assistance
from the edge. We show that a simple and efficient extension to
senders’ networking stack enables such discretion in the network
core by tagging packets with flow size information. Similarly, on the
receiver-side, a re-sequencing shim layer can retrieve the correct
ordering of packets and thus shield the transport and application
protocols from the excessive reordering caused by deflection.

To realize this vision, we design Vertigo, an edge-core co-design
of the networking layer that leverages end-host knowledge of the
flow size information to selectively deflect and drop packets based
on their likely contribution to persistent congestion (as opposed
to microbursts). Vertigo consists of three components deployed
on the path of a datacenter packet. (1) We design an extension
to the end-hosts network stack that tracks and tags every packet
inside a flow with the remaining bytes of its flow, referred to as RFS
(Remaining Flow Size)1. A boosting module decreases the RFS fields
of re-transmitted packets to ensure they do not starve. (2) In the
network core, when a switch receives a packet and the output queue
of the packet is full, the switch selects the packet with the largest
RFS among the newly arrived packet and the packets in its output
queue to deflect: the switch then randomly selects two queues and
inserts the packet into the least loaded one. If both queues are
full, the switch randomly selects one of them and drops the packet
with the largest RFS among the enqueued packets and the deflected

1 In §4, we show that Vertigo continues to be more effective than other baselines such
as ECMP and DIBS [75] even when flow size information is not available in advance.
However, having this information improves its average incast query completion time
by 13%.

packet in order to keep the packets with the lowest RFS in the queue.
(3) Finally, we design a transport-independent packet ordering
framework on the receiver hosts’ RX path that detects and buffers
out-of-order packets to wait for packets experiencing prolonged
RTTs due to deflection. Packets of the flows with more bytes to
send (i.e., those with large RFS) are more likely to contribute to
persistent congestion. When facing microbursts, Vertigo prioritizes
such packets for deflecting (when a randomly selected queue in the
switch has spare capacity) and for dropping (when the network is
congested, indicated by two randomly selected queues being both
full at the same time). This enables Vertigo to gracefully handle
microbursts even under extreme loads.

Vertigo is a burst-tolerant, fast L2/L3 routing technique for dat-
acenters. Albeit more efficient than its L2/L3 counterparts, it still
only provides a best-effort reachability service that may drop and
reorder packets. Thus, it should be deployed below the appropri-
ate transport protocols that provide higher-level services such as
congestion control (e.g., to throttle the send rate when the overall
send rate is higher than the capacity of the network), loss recovery
(due to congestion and failures), and fairness. In our evaluations,
we test the performance of Vertigo as the substrate running below
TCP, DCTCP, and a state-of-the-art datacenter congestion control
algorithm, Swift [47]. Vertigo consistently outperforms the other
L2/L3 baselines such as DIBS [75] (a representative of deflection
routing in datacenters), DRILL [33] (a microburst-tolerant load bal-
ancer), and ECMP (the most widely deployed forwarding protocol
in datacenters) for all these transport protocols, especially under
load and extreme incast scales. For example, in a network with
55% overall link utilization and a bursty workload, Vertigo+DCTCP
reduces mean incast query completion times (QCT) by 48%, and 58%
over DRILL+DCTCP and DIBS+DCTCP, respectively. Under 85%
load, incast queries finish 47% and 68% faster under Vertigo+DCTCP
compared to DRILL+DCTCP and DIBS+DCTCP. Under the same
load (85%), Vertigo+Swift improves the QCT of DRILL+Swift and
DIBS+Swift by a factor of 32 and 15, respectively.

At its core, Vertigo is a deflection routing technique that har-
nesses hosts’ visibility into the workload to remain efficient under
extreme scales and loads. We demonstrate why a naive implemen-
tation of deflection quickly fails in typical datacenter scenarios (§2),
outline our design for making deflection practical in datacenters
(§3), and evaluate the effectiveness of Vertigo in typical datacenter
scenarios, including under various degrees of load, traffic bursti-
ness, and two datacenter topologies, via extensive simulations and
microbenchmarking (§4).

2 DEFLECTION ROUTING IN DATACENTERS:
CHALLENGES AND OPPORTUNITIES

Three factors—(a) the prevalence of microsecond-scale congestion
periods, (b) low overall utilization, and (c) shallow buffer switches—
make datacenters amenable to deflection routing. In deflection
routing, when the output buffer of the preferred path (typically
the shortest path) of a packet is congested, instead of dropping the
packet, the router detours it to a neighboring router. This distributes
the load of the hotspots across the network and reduces the need
for having deep buffers in individual routers.

2

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Deflection routing and hot-potato routing, a variant of it in which
the router is assumed to be buffer-less,2 are commonly deployed
in networks where packet buffers are scarce and expensive such
as optical networks [17–19, 21, 34, 38, 45] and networks-on-chip
[26, 50].

Due to the prohibitive cost and adverse impact of large-buffer
switches on latency, akin to optical networks, datacenter switches
commonly have shallow buffers. Plus, congestion and packet loss
usually happen when there is spare capacity elsewhere in the net-
work. Combined, these characteristics warrant an investigation of
packet deflection in datacenters. With extensive simulations, we
demonstrate that, in datacenters, albeit promising in lightly loaded
networks, deflection routing quickly fails under load, e.g., under 75%
load, deflection routing completes 3× fewer application queries and
results in 1.87× higher query completion times compared to a naive
baseline (ECMP+vanilla TCP). Plus, even under low load, it can
cause excessive packet drops and reordering that is problematic for
pervasive transport protocols, applications, and network monitor-
ing and diagnosis systems that interpret such events as symptoms
of network failure [9, 10, 77], e.g., under 35% offered load, random
deflection leads to a 10-fold increase in packet re-ordering at the
receiving transport and 57% raise in packet loss compared to ECMP.

In our experiments, unless otherwise specified, we deploy DIBS
[75], a recent deflection routing technique for datacenters, as a
representative of deflection routing. Concretely, with DIBS, when
a switch receives more packets than it can enqueue in the output
queue or forward, it detours the excess packets to a randomly
selected port with enough buffer space. DIBS relies on DCTCP
for congestion control and it disables DCTCP’s fast retransmit
mechanism to prevent the side-effects of packet re-ordering. We
next discuss the problems that randomdeflection creates and outline
an approach to make it practical.

Deflection quickly fails under load. Packet loss is one of the
main signals of congestion that congestion control algorithms rely
on. Preventing drops in the network core by deflecting the packets
delays sending this signal to the sources of traffic. Plus, the deflec-
tion itself increases the overall utilization—further exacerbating the
congestion. The traffic, therefore, continues to flow to the point
where many buffers are saturated, and many packets are inevitably
lost, imposing a significant spike in latency.

To quantify the problem, we simulate a leaf-spine network with 4
cores, 8 aggregates, and a total of 320 servers connected via 10Gbps
links to ToR switches with 300KB per-port buffer capacity. We de-
ploy TCP Reno, DCTCP, and DIBS, and write an incast application
in which a set of randomly selected clients periodically send queries
to 100 randomly selected servers at predefined intervals. Upon re-
ceiving a query, each server responds with 40KB of data, and the
initiator marks the query as completed after all 100 replies are re-
ceived. We gradually increase the overall offered load by lowering
incast event inter-arrivals in a network filled with 15% background
load (the flow sizes and interarrival times for the background load
are from [62]). Applying random packet deflection as proposed in
DIBS increases the average number of hops that packets traverse by
20%. As Figure 1 shows, under 80% load, this results in 54% higher

2Hot-potato routing in this context should not be confused with hot-potato routing in
BGP where, between multiple equally good BGP routes, a router selects the one with
the closest egress point [70].

25 35 45 55 65 75 85 95
Aggregate Network Load (%)

0

50

100

In
ca

st
 Q

ue
ry

 C
om

pl
et

io
ns

 (%
)

(a) Completion %

25 35 45 55 65 75 85 95
Aggregate Network Load (%)

0

2

4

M
ea

n
QC

T
(s

)

59ms

(b) QCT

25 35 45 55 65 75 85 95
Aggregate Network Load (%)

0

25

50

75

100

Fl
ow

 C
om

pl
et

io
ns

 (%
)

TCP Reno+ECMP
DCTCP+ECMP
Random Deflection+DCTCP

(c) Flow completions

25 35 45 55 65 75 85 95
Aggregate Network Load (%)

0.0

0.5

1.0

M
ea

n
FC

T
(s

)

8ms

(d) FCT

25 35 45 55 65 75 85 95
Aggregate Network Load (%)

0

500

1000

Ov
er

al
l G

oo
dp

ut
 (G

bp
s)

(e) Overall Goodput

25 35 45 55 65 75 85 95
Aggregate Network Load (%)

0

50

100

150

El
ep

ha
nt

 G
oo

dp
ut

 (M
bp

s)

(f) Elephant flow Goodput

Figure 1:Randompacket deflection starts to break as the aggregate
network load passes 65% due to excessive RTOs caused by packet
drops. The workload consists of 15% background traffic and varying
incast query arrivals.

mean query completion times and 30% higher flow completion time
tail at 99th percentile compared to ECMP+DCTCP. The results also
show that the back-off behavior by random deflection starts to man-
ifest as the aggregate load passes 65%. After this point, increasing
the load results in only a negligible improvement in the applica-
tion goodput with random deflection (Figure 1e), and a substantial
drop in the goodput for elephant flows (flows larger than 10MB)
as depictd in Figure 1f. These results highlight the need for a smart,
load-adaptive deflection technique.

Deflection leads to large delays in completing mice flows.
Preventing packet drops allows the transmission windows of large
flows to grow. Large flows contribute to long-lasting congestion
in switch buffers, and their bursty behavior may result in head-of-
the-line blocking for short flows. Plus, the amortized added delay
of taking longer routes is higher for mice flows. Our simulations
show that random deflection increases the average queueing time
of mice flows (< 100KB) by 111% and increases their average flow
completion time (FCT) by 40%. These results suggest that longer flows
should be prioritized for deflection.

Deflection results in excessive packet reordering. Reorder-
ing can reduce throughput and increase flow completion times. In
most TCP variants (including DCTCP), for example, three consecu-
tive duplicate ACKs (resulted from out-of-order delivery) triggers
the fast retransmit mechanism where the transmission window is
divided in half. To prevent this, some prior techniques, including

3

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

port A

Egress Buffers

port R

II

Network Interface

Vertigo
Marking
Component

Network

Transport

Application

0 #
1 #
2 #
3 #
4 #
5 #
...
..

I

port B

Packet with large
remaining flow size

is deflected
RFS=20,000

Packet with short
remaining flow size

stays in buffer
RFS=3000

Flow Info.
Hash Table

TX Path

Network Interface

Vertigo
Ordering

Component

Network

Transport

Application

Ordering
Buffers

RX Path

!

! !

S R

Network III

A
B

1

2

3

4

5
6

Figure 2: An illustration of a scenario where a microburst causes the last-hop buffer to overflow. Vertigo absorbs the burst by selectively
deflecting packets belonging to flows that contribute to long-lasting congestion.

DIBS, disable the fast retransmit phase [65, 75]. However, when the
switch has to drop a packet, perforce (e.g., in extreme-scale incasts or
in globally congested networks), disabling fast retransmit increases
the delay as every dropped packet will require a retransmission
timeout (RTO) to be retransmitted. This is generally much slower
than the fast retransmit. Our simulation results demonstrate that
random deflection increases the packet re-ordering by a factor of 3,
leading to 18% reduction in the overall throughput of large flows
under 95% load. Plus, network monitoring and diagnosis systems
interpret retransmissions and reorderings as signals of network fail-
ure [9, 10, 77]. These results underscore the necessity of re-sequencing
the packets immediately after they arrive at the destination.

Deflection causes numerous packet drops even in lightly
loaded networks.Deflecting packets to a randomly selected neigh-
boring switch may create congestion in that switch. We verify this
by comparing random deflection vs. a load balancing technique
inspired by the “power of two choices” paradigm [55] where for
deflecting each packet, we randomly sample two queues and send
the packet to the one with lower queue occupancy. In a lightly
loaded network with 35% overall link utilization, random deflection
results in 54.5% higher packet loss compared to the power of two
choices technique. These results point to an opportunity for balancing
the deflected packets evenly in the network.

We next discuss how we overcame the hurdles of random deflec-
tion to build an efficient deflection technique.

3 VERTIGO: TIMELY REACTION TO
MICROBURSTS

We present the design of Vertigo, a fast and simple solution to
microbursts based on packet deflection. Vertigo is composed of ex-
tensions to the host network stack and an in-network deflection and
scheduling component. In Vertigo, the sender host marks the out-
going packets with the remaining bytes of the flow. In the network
core, Vertigo switches harness this information to selectively deflect
packets more likely to contribute to long-lasting congestion when
microbursts occur (or to prioritize dropping these packets when
the overall load is high). Finally, Vertigo’s ordering component,
deployed on the receive path at end-hosts, ensures that packets
arrive at the transport and higher layers in the correct order that
they have been sent.

An Illustrative example. Figure 2 presents an operational
overview of Vertigo when the Top-of-Rack (ToR) switch buffer

facing the destination host has no room to accommodate the incom-
ing packets.3 The marking component on the TX path, deployed as
an independent extension to the existing network stack, receives
the packets from the upper layers 1 and marks them with the Re-
maining Size of the Flow (RFS) in bytes (e.g., for the last packet of a
flow, RFS is equal to packet’s payload length) 2 . This information
will enable Vertigo’s in-network component to make accurate de-
flection, dropping, and scheduling decisions based on the Shortest
Remaining Processing Time (SRPT) paradigm [7] by implementing
priority-based buffering primitives in the network core (§3.1). Even
though scheduling flows based on their remaining processing times
does not guarantee optimal performance, it is shown to produce
near-optimal results when deployed in conjunction with commonly-
used congestion control techniques such as TCP or DCTCP [7, 58].
Our results in §4.3 illustrate that Vertigo’s use of SRPT paradigm
improves the average query completion time by 75% under 95%
load. In the network, each switch places the packet in a priority
output queue, sorted in ascending order of RFS. That is, packets
of the flows with lower remaining sizes will be transmitted first.
The packet is forwarded through the network until it reaches a
full buffer (the destination ToR in this example) 3 . Inserting the
packet in a full priority queue results in buffer overflow and the
packet with the largest RFS being dequeued4. In this example, this
results in the green packet (RFS=3000) being enqueued 4 and the
red packet (RFS=20000) being popped (§3.2). The dequeued packet
is a candidate for deflection: the switch randomly selects two output
ports and enqueues the packet to the least loaded one 5 .5 Finally,
at the destination host, the same RFS field helps Vertigo’s ordering
component to detect and re-shuffle the out-of-order packets before
passing them to upper layers 6 (§3.3).

The visibility provided by the sender’s network stack allows
for a simple and efficient way to distinguish between persistent
congestion and microbursts without imposing the computational
and storage overhead of doing so to the network core, all while

3This is the most common case of packet drops in datacenters; most of the packet loss
(e.g., 90% in a Facebook datacenter [76]) occur in the ToR-server direction [68, 76].
4In practice, more than one packet may be removed from the queue because of different
packet sizes. For simplicity, in this illustrative example, we assume that all packets are
identically sized.
5If both queues are full, we randomly select one and insert the deflected packet. This
will result in a packet loss but full queues in both the forward and deflection paths
signal severe congestion in the network. Therefore, Vertigo does not prevent packet
drops in this case.

4

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

Ethernet
Header ... Remaining Flow

Size (32-bits)
Retcnt
(4-bits)

flow
id

(3-bits) FL
AG

S

Ethertype
(16-bits) IP Header

FLOWINFO as a Layer-3 Header
Additional overhead: 7 bytes

IPv4 Header Type
(8-bits)

Length
(8-bits)

Remaining Flow
Size (32-bits)

Retcnt
(4-bits)

flow
id

(3-bits) FL
AG

S

END
(8-bits)

Transport
Header

FLOWINFO as IPv4 Option header
Additional overhead: 8 bytes

Remaining Flow Size (RFS) (32-bits): Defines the location of a packet inside a flow.
Retcnt (4-bits): Number of times this packet is re-transmitted in the network
Flow-id (3-bits): Used to determine the ordering among flows at the destination.
FLAGS (1-bit): Scheduling discipline-specific. For SRPT, this flag indicates flow's initial packet.

Figure 3: Two implementations of the flowinfo header. On top, the
flowinfo header is implemented as a layer-3 header that encapsu-
lates the IP header. On the bottom, the flowinfo is implemented in-
side IPv4 options header.

enabling transport-independent packet ordering at the destination.
Following the path of a fresh packet, we describe each component
in more detail.

3.1 TX Path: Marking Component
3.1.1 Priority Framework. Advance knowledge of flow sizes allows
the datacenter network designers to implement scheduling policies
that resemble the shortest remaining processing time (SRPT) dis-
cipline and therefore achieve near-optimal flow completion times
[7, 57, 58, 71]. Additionally, storing the remaining flow size inside
the packets helps our deflection component avoid deflecting and
dropping packets of small flows that are more vulnerable to longer
round trip times.6 To realize SRPT marking, Vertigo receives flow
size information from the application and keeps track of the re-
maining bytes of outgoing flows inside a hash table. Vertigo tags
each packet with the remaining bytes of its flow.

Figure 3 depicts two potential implementations for Vertigo’s
auxiliary flowinfo header. A 32-bit field shows the flow’s remain-
ing bytes. Its uniqueness across packets of a single flow allows
the ordering component to detect and resolve packet re-ordering.
Additionally, we add a 4-bit counter, retcnt, to track the number
of re-transmissions each packet has experienced, a 3-bit counter,
Flow-id, to ensure correct ordering between subsequent flows, and
a single-bit flag to mark the first packet of the flow (§3.1.2).

3.1.2 Detecting duplicate packets. Packet loss and re-transmissions
are inevitable in lossy networks. To ensure that the flowinfo header
information remains consistent, the marking component must de-
tect duplicate packets and retrieve their original RFS field. Moreover,
persistently deflecting or dropping packets of large flows may even-
tually lead to their starvation. To prevent this, Vertigo employs a
boosting mechanism as part of the marking component in which the
priority of re-transmitted packets is elevated by reducing their RFS
values. Concretely, every time a packet is re-transmitted, Vertigo
divides its RFS by a user-defined boosting factor. In our evalua-
tions, unless stated otherwise, we set the boosting factor to 2. The

6We also evaluate Vertigo’s performance while using flow-aging to mark the packets
(§4.3). Vertigo achieves 30% higher mean QCT under 90% load while applying flow-
aging discipline instead of SRPT.

boosting procedure diminishes the risk of starvation and repeated
re-transmission timeouts, even for packets of large flows.

Vertigo’s marking component detects re-transmissions by calcu-
lating a CRC hash of packet headers and looking it up in a cuckoo
filter [27] to enable fast look-up and updates in the dataplane. It
then applies the boosting function to the original RFS field of the
packet stored in the flow table and increments the retcnt field in
the flowinfo header. This operation needs to be reversible at the
receiver to maintain the synchrony between the sending and re-
ceiving components; therefore, we confine the marking component
to perform only bitwise rotations on the RFS field. Doing so relieves
the network components from performing any computations on
flowinfo header fields and allows the destination to apply an inverse
boosting function and retrieve the original RFS of the packet. This
limitation implies that the boosting factors must be chosen from
powers of two, yet we show that even 2× boosting is enough to
properly mitigate starvation.

With the boosting factor of 2, Vertigo sets the RFS for a re-
transmitted packet to half of its previous value by performing a
bitwise right rotation on the original RFS. This reduces the prob-
ability of it being selected again for deflection or dropping in the
network. At the destination, Vertigo performs bitwise left rotations
on the packet to retrieve the packet’s original RFS. Using a 32-bit
RFS field, Vertigo can support up to 16 re-transmissions for every
packet. In §4.3, we evaluate the impact of boosting function on Ver-
tigo’s performance and illustrate that, while boosting can increase
the percentage of completed queries by up to 60%, increasing the
boosting factor has negligible impact on overall performance.

3.2 Selective Deflection in the Network
We assume that switches use output queues sorted by packet ranks,
where ranks are the RFS fields provided by Vertigo’s marking com-
ponent.7 We also assume that switch forwarding tables are pre-
populated with the information of the next-hops for every des-
tination. Inspired by the “power of two choices” paradigm [55],
when a switch receives a packet that has more than one possible
next hop, the switch compares the queue lengths of two random
ports and sends the packet to the least loaded one. In addition to
the simplicity of its hardware implementation, the power-of-two
choices forwarding enables fine-grained traffic distribution, hence,
delivering higher throughput guarantees. To apply SRPT schedul-
ing, Vertigo sorts packets in each queue in increasing order of their
RFS fields. When the link is idle and there are packets stored in the
output queue, Vertigo transmits the packet with the smallest RFS,
i.e., the packet stored at the head of the queue.

To manage microbursts, Vertigo tries to exploit the networks’
extra capacity to absorb microbursts. Concretely, when a switch
receives a packet and its output queue is full, the switch selects the
packet with larger RFS between this packet and the tail of its queue
to deflect. For deflecting a packet, the switch randomly selects two
queues and enqueues the packet into the least loaded one. If both
queues are full, the switch enqueues the packet in one of them
(randomly selected). This will result in one or more packets being
dropped from the tail of this queue.

7Recent works provide practical implementations of this abstraction [67, 69].

5

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

Waiting for a
new Flow

In-order
Receive

Out-of-order
Receive

T0

T2

T2

T2

Arm out-of-order timer

T3

T1

Update expected RFS
to flow's remaining bytes

packet fills
 all ooo
gaps?

Transitions
 T0: Receives first packet of a flow
 T1: Receives packet with
 expected RFS
 T2: Receives out-of-order packet
 T3: Out-of-order timeout
 T4: Receives last packet of the flow T1

Update out-of-order timer

YES

NO

T4
Disarm the timer

Fl
us

h

Init Phase

Figure 4: The state-machine decides the fate of arrived packets.
Out-of-order packets are placed inside a separate buffer, arming a
timer to wait for delayed packets. In-order packets are immediately
flushed to the network stack.

For both forwarding and deflecting packets, Vertigo uses the
power-of-two choices paradigm to evenly distribute the load across
the network. However, in contrast to forwarding (where a full queue
results in deflecting packets), Vertigo drops packets if it encounters
full buffers when it tries to deflect a packet. This distinction is in-
tentional. While encountering a full buffer on the forward path can
be a result of a local, short-lived microburst (e.g., at the destination
ToR in incast) and not necessarily an overall congested network,
the output queue and two randomly selected ones all being full at
the same time is a strong indication of extensive, extreme conges-
tion. Via dropping packets in the latter case, Vertigo triggers the
congestion control algorithms to throttle the send rates. Overall,
Vertigo prioritizes packets of flows that are more likely to contribute
to lasting congestion, i.e., those with more remaining packets to
transmit, for deflection and dropping. This helps Vertigo absorb
microbursts even when the network is congested.

3.3 RX Path: The Ordering Component
The ordering component on the receive-side is the first software
entity that obtains packets from the NIC. Its task is to detect out-
of-order packets and temporarily buffer them until the delayed
segments arrive or are timed out. To this end, Vertigo first extracts
the flowinfo header. For every active flow, Vertigo stores the ex-
pected RFS and two intermediate linked lists containing references
to the ready and out-of-order packets, respectively. RFS fields in-
side the flowinfo header are unique among the packets of a flow
except for the re-transmitted packets. Since the re-transmission
boosting mechanism may modify the RFS field (see §3.1.2), Vertigo
first reverts the boosted RFS by applying retcnt left rotations on a
packet’s RFS field.

3.3.1 Ordered Receive. When the destination host receives a
packet, it checks the RFS present in the flowinfo header. Vertigo
expects a packet flagged as the initial packet of a flow to arrive
first. Any packet with a larger counter indicates that there has
been reordering or drops in the network. Figure 4 presents the
state machine of the ordering component. After receiving the first
packet of a flow, the state machine transitions to the In-order Re-
ceive state and continues to receive packets until an out-of-order
packet arrives or the flow terminates. While in the In-order Receive
state, arrived packets are placed in an intermediate buffer, and the

protocol stack’s receive routines are signaled to begin processing
them immediately. The expected RFS is then updated by subtract-
ing the received packet’s size from the previously expected RFS
value. However, when an out-of-order packet arrives, the ordering
component designates a separate pre-allocated buffer to store early
packets and wait temporarily for the in-transit packets. Upon re-
ceiving the entire flow, the state machine transitions back to the
initial state (Waiting for a new flow). This is conceptually similar to
the design of [31], except that Vertigo does not rely on GRO buffers
or TCP sequence numbers to perform re-shuffling.

3.3.2 Out-of-order Receive. When in the Out-of-order Receive state,
a timer is armed to prevent long pauses in packet processing caused
by dropped packets. Thewaiting time depends on the network topol-
ogy, link bandwidth, and link utilization. We define the waiting
time (τ) as the maximum duration of time that the ordering com-
ponent waits for a single delayed packet before starting to process
out-of-order packets. While a short timeout increases the degree of
reordering in the transport layer, large timeouts increase the flow
completion tail latency. A safe estimate of τ is the time it takes for
a single packet to traverse a network with almost full buffers. In
the topologies we used in our evaluations, we set τ = 360µs . §4.3
explores the impact of τ configuration on flow completion times.

Four events can occur when in Out-of-order Receive: 1) The host
continues to receive early packets. In this case, the ordering com-
ponent continues to buffer these packets along with their arrival
timestamp until either timeout occurs or the expected packets ar-
rive. 2) The host receives a packet that fills one of the gaps in the
ordering buffer. Henceforth, the component can move its expected
receive window forward to the next gap in the out-of-order buffer,
update the timeout timer by subtracting the elapsed time from the
arrival of next out-of-order packet from τ , and place the in-order
packets in the ready buffer. After filling all the gaps, the state ma-
chine transitions back to In-order Receive state and disarms the
timer. 3) The host receives packets with an RFS that is smaller
than the expected RFS. This may indicate the arrival of delayed
re-transmissions or a duplicate packet. Vertigo ignores packets
that are already inside the ready buffer and places the late packets
at the head of the ready buffer to send them up to the transport
immediately. 4) The re-ordering timeout occurs. In this case, the
re-ordering component releases all packets until the next gap up
to the transport layer to trigger the protocol-specific decisions. It
moves its expected packet pointer to the next gap in the out-of-
order buffer and updates the timer. Finally, unless the out-of-order
buffer is not empty, the system transitions to In-order Receive.

Previous proposals on random deflection disable TCP fast re-
transmit to prevent the consequences of excessive re-ordering [65,
75], such as injection of redundant duplicate packets. This causes
the packet loss to be detected only by re-transmission timeouts
(RTOs), further delaying the loss recovery process. In Vertigo, we
configure ordering timeouts to be small enough to still trigger fast
re-transmission in the case of packet loss, while preventing the
injection of unnecessary duplicate packets into the network. This
ensures that VertigoâĂŹs interference with existing congestion
control mechanisms is minimized.

Summary: We presented the design of Vertigo, a burst-tolerant
routing technique for datacenters that deflects excess packets to

6

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

neighboring switches to absorb microbursts. To prevent the per-
formance degradation of deflection under high load, Vertigo prior-
itizes deflecting (and dropping, when the network is overloaded)
the packets of the flows with more remaining bytes to send as they
are more likely to contribute to lasting congestion. Furthermore,
it employs a boosting mechanism to further assist with flow com-
pletions and prevent starvation. To enable these, we augmented
the hosts’ network stack with a transport-independent fast packet
processing framework that performs packet marking on the TX
path and packet ordering on the RX path.

4 PERFORMANCE EVALUATION
We evaluate Vertigo using large-scale OMNET++ simulations [2]
and microbenchmarks on a physical testbed using our prototype
host component implementation.8 We briefly summarize our find-
ings:
• Our large-scale simulations demonstrate that, using the DCTCP
congestion control under 85% offered load, Vertigo reduces the
average incast query completion times by 66%, 65%, and 77%
compared to ECMP, DRILL, and DIBS, respectively (§4.2).

• We show that combining Vertigo with Swift’s state-of-the-art
congestion control can significantly reduce the packet loss under
bursty traffic (85% load) and achieve 32×, and 10× improvement
over Swift+DRILL in query completion times and flow completion
times, respectively (§4.2).

• We analyze the impact of each individual component of Vertigo
and show how the combination of selective deflection, SRPT
forwarding, re-transmission boosting, and receiver-side ordering
achieves strong burst-tolerance (§4.3).

4.1 Simulation Setup
Network Topologies.We perform our simulations on a two-tiered
leaf-spine topology consisting of 4 core switches, 8 aggregate
switches, and 320 servers. The switch links have 40Gbps band-
width and the servers are connected to ToRs using 10Gbps links.
Each switch port has 300KB buffer capacity [12, 75]. We also vali-
date our findings against an equivalent fat-tree [4] network (k = 8)
with 128 servers and 80 switches.

Workloads. For the background load, we run widely deployed,
public datacenter traffic traces, i.e., Facebook’s cache follower, Face-
book’s data mining, and Google’s web search, for interarrival times
and flow size distributions [6, 62]. We scale the flow interarrival
times to vary the load. For generating microbursts, we implement
an incast application in which some randomly selected clients peri-
odically send queries to a set of servers, also selected at random,
that all reply to the queries simultaneously. To vary the level of
traffic burstiness, we change three parameters: (a) the incast scale,
i.e., the number of servers that each client sends a query to, (b) the
number of incast queries per second (QPS), i.e., the rate at which
the destinations initiate incast queries and (c) the individual incast
flow size. We set the simulation time limit of the experiments to 5
seconds.

Alternative approaches. We compare Vertigo against in-
network solutions like ECMP, the default load-balancing scheme

8Vertigo artifacts for large-scale simulations, host implementation, and switch sched-
uler abstraction are publicly available at https://github.com/hopnets/vertigo-artifacts.

Setting Min Max Default
Background Load % [48, 54, 75] 15 95 50
Incast QPS [75] 2000 28000 4000
Incast Scale [49, 75] 50 450 100
Incast flow size (KB) [75] 1 180 40
Reordering timeout (µs) 120 1080 360
Table 1: Parameter ranges used in Vertigo evaluation.

widely used in datacenters, DRILL [33], a micro load-balancer with
per-packet load distribution decisions, and DIBS [75], a random
packet deflection technique. For transport and congestion control,
we combine the above alternatives with TCP Reno [28], DCTCP
[6], and Swift [47]. We also evaluate Vertigo’s performance with
alternative packet marking and scheduling disciplines.

Parameter settings. Table 1 lists the parameters for large-scale
simulations. Unless explicitly stated otherwise, we use the default
values for all experiments, run DCTCP with the marking threshold
of 65 as our default transport protocol, set Vertigo’s deflection and
load-balancing factors (power of n) to 2, TCP’s initial window to
10 packets, and TCP’s initial RTO to 1s and minRTO to 10ms to
closely follow the parameter settings reported in [6, 75]. Lastly, we
configure Swift according to the guidelines provided in [47]. All
other parameters are default INET settings [1].

4.2 Large-scale Event-driven Simulations
We evaluate Vertigo under various incast and non-incast traffic
settings by comparing it to widely deployed and the state-of-the-art
techniques. We collect and report the response times, flow com-
pletion times (FCT), query completion times (QCT), application
goodput, and some lower-level metrics like packet drops, reorder-
ing, and RTTs.

Vertigo offers superior performance under various de-
grees of load. In the first experiment, we gradually increase the
incast event rate under three different degrees of background load,
25%, 50%, and 75%. The results, presented in Figure 5, clearly show
the limitations of micro load balancing and random deflection.
DRILL (a micro load balancer) cannot prevent last-hop bursts that
are induced by incast. In practice, the majority of drops occur at the
last hops [48, 68]. The performance of DIBS rapidly degrades under
load, e.g., with a 10% increase in the overall load from 60% (50%
background+10% bursty workload) to 70% (50% background+20%
bursty workload), the mean QCT and FCT of DIBS increase 6-fold
and 21-fold, respectively. In comparison, the performance of other
techniques degrades muchmore gracefully under load, e.g., the QCT
and FCT of DRILL increase by 10% and 16%, respectively. Overall,
neither micro load balancing nor deflection alone is effective under
both low and high loads. Vertigo, in contrast, consistently delivers
low FCT and QCT under all degrees of load including extreme loads,
e.g., under 90% load (75% background + 15% incast load), Vertigo
reduces the mean FCT of DRILL and DIBS by 5.1× and 2.7×, re-
spectively. The results also show that when the background load
dominates the incast load, DIBS’s 99th FCT percentile (p99) remains
lower than other systems due to saving persistent background flows,
however, this performance comes at the cost of higher incast query
completion times compared to Vertigo.

We repeat these experiments, replacing DCTCP with TCP for all
schemes. Our results highlight the dependence of DIBS on DCTCP.

7

https://github.com/hopnets/vertigo-artifacts

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

35 45 55 65 75 85 95
Aggregate Network Load %

0

1

2

3

4

Me
an

 Q
CT

 (s
)

ECMP
DRILL

DIBS
Vertigo

35 45 55 65 75 85 95
Aggregate Network Load %

0.00

0.25

0.50

0.75

1.00

M
ea

n
FC

T
(s

)

35 45 55 65 75 85 95
Aggregate Network Load %

0

2

4

6

p9
9

QC
T

(s
)

35 45 55 65 75 85 95
Aggregate Network Load %

0

1

2

3

4

p9
9

FC
T

(s
)

(a) 25% BG Load

55 65 75 85 95
Aggregate Network Load %

0

1

2

3

4

Me
an

 Q
CT

 (s
)

ECMP
DRILL

DIBS
Vertigo

55 65 75 85 95
Aggregate Network Load %

0.00

0.25

0.50

0.75

1.00

M
ea

n
FC

T
(s

)

55 65 75 85 95
Aggregate Network Load %

0

2

4

6

p9
9

QC
T

(s
)

55 65 75 85 95
Aggregate Network Load %

0

1

2

3

4

p9
9

FC
T

(s
)

(b) 50% BG Load

80 85 90 95
Aggregate Network Load %

0

1

2

3

4

Me
an

 Q
CT

 (s
)

ECMP
DIBS

DRILL
Vertigo

80 85 90 95
Aggregate Network Load %

0.00

0.25

0.50

0.75

1.00

M
ea

n
FC

T
(s

)

80 85 90 95
Aggregate Network Load %

0

2

4

6

p9
9

QC
T

(s
)

80 85 90 95
Aggregate Network Load %

0

1

2

3

4

p9
9

FC
T

(s
)

(c) 75% BG Load

Figure 5: Vertigo achieves a steady QCT performance under various load distributions when all systems use DCTCP as their transport. As
the background load dominates the network, fewer packet drops lead to shorter query completion times.

35 45 55 65 75 85 95
Aggregate Network Load %

1ms
10ms

100ms
1s
5s

M
ea

n
QC

T

DIBS TCP
DIBS DCTCP
DIBS Swift
ECMP Swift

Vertigo TCP
Vertigo DCTCP
Vertigo Swift

(a) Mean QCT

0 1 2 3 4 5
QCT (s)

0.0

0.5

1.0

CD
F

(b) QCT CDF

Figure 6: Vertigo delivers low QCT with TCP, DCTCP, and Swift.

Replacing DCTCP with TCP leads up to 10× jump in DIBS’ query
completion times and expedites its collapse under load. In contrast,
Vertigo remains efficient under TCP as well. Figure 6 shows that
Vertigo+TCP outperforms other alternatives that leverage DCTCP,
and performs in the close proximity of Vertigo+DCTCP.

We next replace TCP with a state-of-the-art congestion control
technique, Swift [47]. Designed specifically to handle extreme and
bursty datacenter workloads such as large-scale incasts, Swift is dif-
ferent from traditional congestion control protocols such as DCTCP
and TCP along two key dimensions: (1) it leverages advanced, high-
resolution hardware and software timestamps to precisely measure
RTTs and rapidly react to increasing RTTs and (2) it combines
window-based congestion management with packet pacing to pre-
vent microbursts. Under extremely large incasts, with thousands

of flows destined to a single host simultaneously, the number of
flows exceeds the path BDP (bandwidth-delay product) and even
a congestion window of one single packet is too high to prevent
packet drops. Window-based congestion control algorithms such
as DCTCP and TCP are fundamentally not suited for managing
such extreme microbursts. To handle such cases, Swift allows the
congestion window to fall below one packet, e.g., cwnd=0.5 results
in sending a packet after a delay of 2RTT [47].

Consistent with the reports from Google’s datacenters that show
Swift’s efficiency even under extreme load (e.g., 95%) [47], our sim-
ulations show that Swift retains low-latency under different load
levels and large-scale incasts. However, our results also show that
the performance of Swift can be significantly improved if it is com-
bined with Vertigo. By selectively deflecting packets, Vertigo delays
pacing and rate reduction in Swift. For example, under 25% fixed
background load combined with various levels of incast traffic
raising the load up to 95%, running Vertigo with Swift results in
an order of magnitude reduction in Swift’s mean QCT and zero
packet loss up until the load reaches 75%. Under 85% and 95% load,
Vertigo+Swift drops only 2×10−6% and 2×10−4% of the packets,
respectively. In comparison, with ECMP+Swift, the loss rates are
0.12% and 0.51%, respectively. Under Vertigo+Swift, the drop rates
are up to four orders of magnitude lower than the drop rates under
Vertigo+TCP and Vertigo+DCTCP. This underscores the impor-
tance of congestion control in managing severe congestion. Similar
to our previous results, DIBS is effective under low load but fails as
the load increases. Figure 6a depicts the results.

Vertigo is effective in three-tiered topologies. To evaluate
Vertigo in another common datacenter topology, we perform our
simulations in a fat-tree [4] with k = 8 (128 servers and 80 switches)
and 10Gbps links, shortening the simulation deadline to three sec-
onds. For these experiments, we compare ECMP, DIBS, and Vertigo
under three different combinations of background and incast load
when using DCTCP and Swift for congestion control. Based on the
results shown in Figure 7, for a network filled with 50% background
and 25% incast load, Vertigo can effectively reduce the QCT of
ECMP under both DCTCP and Swift by 71% and 98%, respectively,

8

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

100μs 1ms 10ms 100ms 1s
FCT

0.0

0.5

1.0

CD
F

DCTCP ECMP
DCTCP DIBS
DCTCP Vertigo

10ms 100ms 1s
QCT

0.0

0.5

1.0

CD
F

(a) 25% background + 10% incast - DCTCP

100μs 1ms 10ms 100ms 1s
FCT

0.0

0.5

1.0

CD
F

Swift ECMP
Swift DIBS
Swift Vertigo

10ms 100ms 1s
QCT

0.0

0.5

1.0

CD
F

(b) 25% background + 10% incast - Swift

100μs 1ms 10ms 100ms 1s
FCT

0.0

0.5

1.0

CD
F

DCTCP ECMP
DCTCP DIBS
DCTCP Vertigo

10ms 100ms 1s
QCT

0.0

0.5

1.0

CD
F

(c) 50% background + 25% incast - DCTCP

100μs 1ms 10ms 100ms 1s
FCT

0.0

0.5

1.0

CD
F

Swift ECMP
Swift DIBS
Swift Vertigo

10ms 100ms 1s
QCT

0.0

0.5

1.0

CD
F

(d) 50% background + 25% incast - Swift

100μs 1ms 10ms 100ms 1s
FCT

0.0

0.5

1.0

CD
F

DCTCP ECMP
DCTCP DIBS
DCTCP Vertigo

10ms 100ms 1s
QCT

0.0

0.5

1.0

CD
F

(e) 25% background + 60% incast - DCTCP

100μs 1ms 10ms 100ms 1s
FCT

0.0

0.5

1.0

CD
F

Swift ECMP
Swift DIBS
Swift Vertigo

10ms 100ms 1s
QCT

0.0

0.5

1.0

CD
F

(f) 25% background + 60% incast - Swift

Figure 7: Vertigo cuts the flow and query completion times of
ECMP and DIBS under two congestion control schemes in a fat-tree
topology.

while improving the tail QCT of random deflection by 51% and
29%. This is because, with Swift, all systems experience orders of
magnitude fewer drops. Therefore, even random deflection is able
to considerably reduce the QCT tail of ECMP, and complete over
99% of the incast queries within the simulation deadline. Table 2
presents the percentage of all flows and incast queries completed
before the deadline under both DCTCP and Swift. Our results indi-
cate that, while ECMP and DRILL can heavily benefit from Swift,
Vertigo is able to maintain over 98% and 93% flow and query comple-
tion performance, respectively, regardless of the congestion control
technique.

Additionally, with less dominant background load, we observe
that the QCT and FCT of DIBS quickly degrades with the increased
incast traffic load, completing only 19% of the queries with DCTCP

CC/System ECMP DIBS Vertigo
DCTCP 78.53% 96.07% 98.00%
Swift 97.69% 99.44% 99.76%

(a) % Flow completion

CC/System ECMP DIBS Vertigo
DCTCP 28.36% 71.25% 92.98%
Swift 79.91% 99.06% 99.57%

(b) % Query completion

Table 2: Flow and query completion ratios of three evaluated sys-
tems under DCTCP and Swift congestion control under 75% load
(50% background + 25% incast).

under 85% load. With 85% aggregate load consisting of 25% back-
ground and 60% incast (Figure 7f) and DCTCP as the transport
protocol, Vertigo makes use of extra 33% buffering capacity, extra
20% deflection destinations, and extra 4× forwarding choices in the
fat-tree topology to improve the percentage of completed queries
and tail QCT of random deflection by 53% and 65%, respectively.
Finally, we observe that in all scenarios Vertigo+Swift combination
offers near-0 drops akin to the two-tiered leaf-spine simulations.

Vertigo completes more queries under large-scale incast.
Next, we gradually increase the scale of incast events from 50 to 450
while fixing the incast rate to 4000QPS and incast flow size to 40KB.
With 50% of the offered load originating from background traffic,
the incast traffic elevates the overall offered load up to 95%. Figure
8 presents the results. As incast scale increases, all systems except
Vertigo struggle to complete queries. That is because completing a
single query requires the completion of manymore individual flows.
In contrast, Vertigo is able to selectively deflect, drop, and boost
packets, resulting in up to 10× more completed queries compared
to other alternatives. As Figure 8c shows, the mean FCTs of all
schemes climb with higher incast scales which is a result of more
frequent drops and queueing delays for both incast and background
flows.

Vertigo performs well even under large incast flows. In
this experiment, affixing the background load to 50%, we increase
the overall offered load by sending larger incast flows. With 100
flows contributing to an incast event and incast rate of 4000QPS,
we increase the size of the incast flows from 1K to 180KB. The
results, presented in Figure 9, align well with our previous findings.
As the incast flow size increases, the techniques that do not take
remaining flow size into account fail to categorize large flows as
incast flows and forward them accordingly. Vertigo, however, is
able to identify halfway completed flows and helps them finish
with the combination of deflection and re-transmission boosting
mechanisms. As the flow sizes increase, DIBS’s drop rate exceeds
Vertigo. With 180KB incast flows, the mean QCT of Vertigo is 68%
and 58% lower than DIBS and DCTCP+ECMP in the rightmost
datapoints, respectively.

Burstiness is a challenge for random deflection. Vertigo
performs robustly under extremely bursty traffic. Next, to in-
vestigate whether different degrees of burstiness can affect the
overall performance of Vertigo, we fix the overall offered load to
25%, 50%, and 80%, adjusting the ratio of the incast traffic by squeez-
ing the incast interarrival times. Figure 10 presents the results for
80% offered load. The QCT for all systems start to rise as the de-
gree of burstiness increases. Vertigo, however, delivers steadily
low latency by avoiding around 15% of packet drops and inflicting
the majority of inevitable packet loss to larger flows even in the
most extreme case. The results also show DIBS’s limitation under
heavy background load. With switch buffers partly occupied by

9

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

50 150 250 350 450
Incast Scale

0

50

100

%
 C

om
pl

et
ed

 Q
ue

rie
s

DIBS
ECMP
DRILL
Vertigo

(a) Completed Incast Queries

50 150 250 350 450
Incast Scale

0

2

4

M
ea

n
QC

T
(s

)

(b) Mean QCT

50 150 250 350 450
Incast Scale

0

1

2

M
ea

n
FC

T
(s

)

(c) Mean FCT

50 150 250 350 450
Incast Scale

0

2

4
p9

9
FC

T
(s

)

(d) p99 FCT

Figure 8: Vertigo completes up to 10× more queries in larger scale
incast traffic patterns.

1 10 20 40 60 100 140 160 180
Incast Flow Size (KB)

0

1

2

M
ea

n
QC

T
(s

) DIBS
ECMP

DRILL
Vertigo

Figure 9: Vertigo maintains a
high query completion rate even
with large incast flows while
other alternatives face frequent
RTOs due to congested buffers.

2 4 8 12 16 20 24 28
Incast Arrival Rate (kQPS)

0

2

4

M
ea

n
QC

T
(s

) TCP ECMP
DIBS
ECMP

DRILL
Vertigo

Figure 10: Tweaking the de-
gree of burstiness by increas-
ing the incast arrivals and affix-
ing the overall offered load. Ver-
tigo maintains low QCT perfor-
mance.

background flow, DIBS quickly fails to handle incast queries as
shown in Figure 10. Even under a low load (25%), we observe that
Vertigo’s mean QCT is 16% lower than DIBS. Under 25% and 50%
load and extreme burstiness, Vertigo achieves 12% and 55% lower
99-%ile FCTs compared to DIBS, respectively.

Vertigo favors short flows under less bursty workloads. In-
casts and microbursts are the norm in today’s datacenter workloads
[15, 44, 62, 68, 76]. However, we evaluate Vertigo under non-bursty
traffic as well. Our results show that Vertigo continues to deliver
a solid performance under these traffic patterns, too. We increase
the background traffic, sampled from Facebook’s cache follower,
Facebook’s data mining, and Google’s Web search distributions,
from 25% to 90% [6, 62]. Cache follower is a mice-dominated work-
load with 50% of the flows sending less than 24KB. Hence, Vertigo’s
SRPT forwarding combined with its micro load-balancing helps
reduce the overall FCTs by up to 116% compared to ECMP+DCTCP.
For web search and data mining workloads that are dominated by
large flows, we observe that using Vertigo leads up to a marginal
4% increase in FCT. Our results indicate that without bursty traffic
and for workloads dominated by large flows, transport protocols
like DCTCP are effective in recovering from infrequent drops.

4.3 Vertigo Design Deep-dive
Component Analysis. Vertigo relies on three main components
responsible for (1) deflecting packets that arrive at a full buffer (in-
stead of simply dropping them), (2) SRPT scheduling in the network

55 60 65 70 75 80 85 90 95
Aggregate Network Load %

0

2

4

M
ea

n
QC

T
(s

)

Vertigo
No Deflection

No Scheduling
No Ordering

(a) Deflection and ordering

25% 75%
Background Load %

0

50

100

%
 C

om
pl

et
ed

 Q
ue

rie
s

No Boosting
x2 Boosting

x4 Boosting
x8 Boosting

(b) Boosting

Figure 11: Each individual aspect of Vertigo’s design (deflection,
scheduling, ordering, and boosting) contributes to its efficiency.

core (as opposed to FIFO), and (3) retrieving the correct ordering
of out-of-order packets before sending them to higher layers. We
quantify the impact of each of these components on the overall
superior performance of Vertigo in Figure 11a. The key contribution
of packet deflection is avoiding drops, and consequently, RTOs. We
observe that in the lowest load, without deflection, QCT increases
by a factor of 13× as the packet loss raises by 6×. Disabling the
scheduler, however, has an even more notable effect as it reduces
Vertigo’s performance to that of random deflection alternatives. For
example, in high loads, without scheduling, Vertigo suffers from
up to 110% increase in mean QCT. We also repeat the experiments
with Vertigo without its ordering layer. While packet re-ordering
has minimal impact on QCT, it increases the overall FCT by up to
9% and reduces the overall goodput by 7% as reordering causes the
larger flows’ windows to shrink.

Re-transmission boosting is key in completing incast
queries. Boosting the re-transmitted packets is another critical
player in the overall performance of Vertigo. We start by disabling
the boosting mechanism (the leftmost columns in Figure 11b). Then,
starting from 2× (the default factor for reducing the packet RFS
values for every re-transmission), we try various powers of two
boosting factors up to 8×. We observe that boosting is essential in
completing flows that experience packet drops; Vertigo’s query com-
pletion rate drops by 65%without boosting. However, boosting pack-
ets more aggressively (boosting factors above 2×) does not cause a
noticeable improvement, since the majority of re-transmitted pack-
ets successfully reach their destination in the second attempt with
the boosting factor of 2×.

Comparing random and power-of-2 load-balancing on de-
flection and forwarding. Vertigo uses the power of two choices
scheme for its forwarding and deflection decisions. To measure the
impact of this load balancing paradigm on Vertigo’s performance,
we preform four sets of incast simulations with 50% background
load and various incast QPS rates, trying out random and power
of two choices load-balancing for forwarding (1FW and 2FW, respec-
tively) and deflection (1DEF and 2DEF, respectively). We present
our results in Figure 12. We observe that randomly choosing a
destination for deflected packets increases the chance of packet
drops by up to 47%, severely damaging the query completions. The
gap, however, begins to fade as the offered load increases. This is
because, in higher network loads, the probability of finding free
buffer space is significantly reduced.

Alternative marking disciplines. Flow size information is a
reliable indicator of flow persistence and can be used to achieve
near-optimal scheduling performance. However, if the flow size

10

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

35 55 75 95
Offered Load %

0.0

0.5

1.0

M
ea

n
QC

T
(s

)

^1 FW ^1 DEF
^1 FW ^2 DEF

^2 FW ^1 DEF
Vertigo

(a) QCT under two-tiered LS

35 55 75 95
Offered Load %

0.1

1.0

10.0

Dr
op

 %

^1 FW ^1 DEF
^1 FW ^2 DEF

^2 FW ^1 DEF
Vertigo

(b) Drops under two-tiered LS

35 55 75 95
Offered Load %

0.0

0.5

1.0

M
ea

n
QC

T
(s

)

^1 FW ^1 DEF
^1 FW ^2 DEF

^2 FW ^1 DEF
Vertigo

(c) QCT under fat-tree

35 55 75 95
Offered Load %

0.1

1.0

10
Dr

op
 %

^1 FW ^1 DEF
^1 FW ^2 DEF

^2 FW ^1 DEF
Vertigo

(d) Drops under fat-tree

Figure 12: Evaluating random (̂1) and power-of-two (̂2) tech-
niques for forwarding (FW) and deflection (DEF) in Vertigo. The
power-of-two-choices paradigm reduces packet drops and QCTs un-
der low and medium loads.

Setting → DCTCP DCTCP Vertigo
Load ↓ ECMP DIBS SRPT LAS

55% 0.98 0.02 0.06 0.14
65% 1.08 0.74 0.32 0.40
75% 1.22 1.81 0.56 0.59
85% 1.61 2.56 0.67 0.77
95% 2.34 3.12 0.72 0.94

Table 3: Flow aging is less effec-
tive than SRPT, but outperforms
other baselines.

120 240 360 480 600 720 840 960
1080

Ordering Timeout (μs)

10

100

1000
5000

FC
T

(m
s)

Mean p99

Figure 13: Ordering timeout
configuration has a negligible
impact on flow completion
times.

information is not available, Vertigo resorts to flow aging instead.
Under this scheduling discipline, also known as Least Attained
Service (LAS), flows are initially marked with 0, regardless of their
size. The consecutive packets carry a counter that shows the total
number of packets sent by their flow or flow’s age in packet units.
We adapted the host components to implement LAS and repeated
our previous simulations. Table 3 shows the results. LAS takes a
few transmissions to differentiate between flows. Consequently, its
initial decisions are suboptimal compared to SRPT. We observed
up to 30% difference in the mean QCTs under SRPT and LAS with
different workloads. However, Vertigo+LAS still outperforms other
baselines such as ECMP and DIBS by 52% and 70% under 85% offered
load, respectively.

Vertigo’s re-ordering timeout setting has a bounded effect
on flow completion times. Finally, to demonstrate the effective-
ness of Vertigo’s ordering extension in detecting and resolving
packet re-ordering, we repeat our incast simulations, raising the
ordering timeout (τ) from 120µs up to 1.08ms. The results presented
in Figure 13 suggest that setting the timeout to the maximum delay
a packet might experience in the network without being deflected,
as described in §3.3, is indeed a good estimate as the majority of
out of order packets are not deflected. We observe that the latency
penalty of improper timeout setting does not exceed a few millisec-
onds (5ms in our simulations) in abundance of incast flows in an
extremely congested network.

4.4 End-host and Switch Implementation
We deploy Vertigo’s host components, on a physical testbed con-
sisting of two Cloudlab [25] machines, featuring two Intel Xeon
E5-2640v4 processors, 64GB of memory, and 25Gbps Mellanox
ConnectX-4 network interface cards. We build a packet genera-
tor tool on top of Vertigo’s userspace network stack and measure
the RTTs and throughput of a single-threaded TCP server with
the marking and ordering components enabled/disabled. To ensure
minimal packet processing overheads in Vertigo, we use DPDK
cuckoo filters for flow identification at both the marking and order-
ing components. For the packet header hash, we use pre-allocated
pools of fast hash tables and modify the existing ring buffer im-
plementations in DPDK to store out-of-order packets. Our results
indicate that the two extra hash table look-ups performed by Ver-
tigo’s marking component require an additional 300ns processing
time. However, the throughput results demonstrate <0.1% difference
when Vertigo’s marking component is enabled.

Recent endeavors on designing hardware-based priority queues
enable programmable scheduling in data-plane at line-rate [64, 67,
69]. To implement a Vertigo switch, two mechanisms must be added
to existing implementations of the priority queue: 1. The ability to
extract items from the tail of the priority list. In Vertigo, packets that
arrive at a full buffer still might get a buffering space if their remain-
ing flow size is smaller than that of a buffered packet. To this end,
we extend PIEO’s abstractions [67] to support packet extraction
from the tail of the queue (§A.3). Similar to other functionalities
supported by PIEO, the packet extraction process is executed in 4
cycles. 2. The ability to change the output port for a packet when a
buffer is full. With negative mirroring functionality already avail-
able in PISA switches [3] and fast SRAM access in re-configurable
switches [67], Vertigo can perform deflection in just a few clock
cycles. To that end, we extended the functionality of PIEO [67] to
find that deflection, a special case of enqueue operation requires
one additional dequeue, adding 4 extra cycles. Since packet drops
remain scant compared to the overall flowing traffic, the amortized
cost of insertion remains unchanged. We leave the full hardware
implementation of a Vertigo switch and testbed evaluations using
this switch to future work.

5 RELATEDWORK
Datacenter traffic is bursty [15, 44, 62, 76]. Microbursts have a
large set of root causes such as bursty traffic introduced by datacen-
ter applications [11, 32, 73], transport protocol operations [40, 41],
and operating system optimizations [44, 53], that are not hard to de-
tect and manage [42]. Some recent in-network designs augment the
programmable data planes with fast stateful processing to detect mi-
crobursts. Conquest [20] introduces a queue monitoring technique
to detect heavy-hitter flows in the presence of microbursts. Marple
[59] presents a data store and a query language that can track and
detect fine-grain traffic characteristics (e.g., inter-packet gap pat-
terns for a flow). Mantis [74] enables a datapath between the switch
dataplane, to gather the traffic state, and switch control-plane to
implement quick reactive decisions. Although these monitoring
tools are invaluable for network management, we find that a sim-
ple host-assisted technique that tags packets with their flow size
information is surprisingly effective for managing microbursts.

11

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

Preventing microbursts at the edge. Many recent propos-
als try to prevent the formation of microbursts at end-hosts [6, 29,
30, 47, 49, 56]. Imposing random delays to user requests to miti-
gate the degree of synchronization between flows [29] is among
the first deployed remedies. This technique improves the tail of
Flow Completion Time (FCT) but increases the median FCT [6].
Receiver-driven transports are another emerging solution to avoid
packet loss by performing bandwidth allocation using credit packets
[22, 30, 39, 56]. Another group of works try to prevent the sender
hosts from transmitting large bursts of traffic that the network cannot
absorb [6, 47, 48]. Using Explicit Congestion Notification (ECN),
DCTCP tries to avoid microbursts’ consequences by keeping head-
room inside switch buffers to absorb the bursts [6]. Swift [47] and
HPCC [48] improve the precision and speed of prior congestion con-
trol algorithms such as DCTCP via using advanced telemetry tech-
niques. Swift uses fine-grained timestamps at the edge to accurately
measure packets’ RTTs as a congestion notification and paces the
packets accordingly to prevent congestions. HPCC [48], an RDMA
congestion control algorithm, relies on in-network telemetry infor-
mation carried by in-flight packets to adjust its transmission rate
and avoid packet loss. These techniques require a few Round-Trip
Times (RTTs) to converge, which is longer than the lifetime of most
microburst events [76]. Although significantly faster than TCP and
DCTCP, we show that Swift can benefit from running Vertigo in
the networking layer, e.g., under 55% load, Swift+Vertigo’s mean
QCT is 96% shorter than Swift+ECMP (§4).

Taming microbursts in the network core. Datacenter load
balancers [5, 33, 36, 72] strive to distribute microbursts at the core of
the network by evenly balancing the traffic among multiple paths.
These techniques fundamentally cannot manage the microbursts
at the last hop (switch-to-receiver host) where the majority of mi-
crobursts transpire [48, 68, 76]. Unlike others, FastPass [61] uses a
centralized arbiter to schedule and route the traffic. While FastPass
can prevent microbursts, centralized designs pose scalability chal-
lenges. Deflection techniques detour excess packets to neighboring
switches [65, 75]. Deflection, however, creates multiple challenges
in datacenters. Notably, it results in excessive packet re-ordering,
introduces head-of-the-line blocking in switch buffers, and breaks
under high load (§2).

Buffer management, e.g., via packet scheduling (ordering packets
within a queue) and selective dropping (in case of buffer overflow),
is a large and mature area of research [7, 16, 23, 24, 35, 37, 49, 60, 66].
NDP, for example, drops the packet payload [35] and TLT prevents
packet drops that are only recoverable by timeouts [49]. We find
that a simple buffer management technique based on SRPT and the
remaining flow size is efficient across all the tested workloads. We
leave a detailed exploration of optimizing Vertigo with other buffer
management techniques to future work.

Some L2/L3 techniques rely on the internals of the congestion
control algorithm to implement networking services [31, 36, 75].
DIBS, for instance, disables the fast retransmission mechanism of
DCTCP [75], and Presto and Juggler use TCP’s sequence numbers to
resequence the reordered packets [31, 36]. This poses a hurdle in de-
ploying such techniques as the set of congestion control algorithms
in today’s datacenters is large and rapidly evolves to meet key
operational needs [47, 48, 53]. Plus, even in one datacenter, many
congestion control algorithms can coexist, e.g., latency-sensitive

andWAN traffic deploy different congestion control algorithms, cus-
tomers configure their cloud VMs with their preferred congestion
control algorithms, and UDP traffic relies on the application-level
rate control logic [47]. Requiring changes to the congestion control
logic and relying on its internal mechanisms complicate deploy-
ment. Thus, Vertigo strives to provide a burst-tolerant forwarding
service that is agnostic to the internals of the congestion control
algorithm. This allows these layers to evolve independently. In Ver-
tigo, we build on some of the powerful ideas from the related work,
e.g., “power of two choices” forwarding [33], deflection routing
[75], and ordering layers [31], and address their limitations and
shortcomings.

Integration with network monitoring. The continuous
growth in the scale of datacenters and the rate at which they op-
erate, in addition to higher performance expectations and more
strict service-level objectives (SLOs), leave minimal time slack for
resolving network anomalies [52, 77]. As finding the root causes
of network anomalies requires considerable time, the proposals
on network telemetry [14, 46, 52, 77] advocate fast, accurate, and
scalable network monitoring. Concretely, to quickly pinpoint the
cause of a network anomaly and SLO violation, these proposals seek
fine-grained measurement of performance-critical characteristics
of the network, such as link utilization, queue occupancy, path con-
formance, and packet drop. Vertigo’s functionalities might interfere
with some of these telemetry operations. For instance, tracking
the number of packet drops gives the operators an insight into the
degree of temporal congestion events inside the network while,
with packet deflection, packet drops only indicate large-scale long-
lasting congestion. However, by tracking other events, such as link
utilization and the number of deflections per packet, a telemetry
system can detect anomalies such as temporal congestion. We leave
the design of a telemetry system that supports packet deflection to
future work.

6 CONCLUSION
Short-lived congestion events that cause excessive packet loss re-
main a major challenge in datacenter networks. Frequently low
utilization is datacenters suggests that temporarily deflecting burst
packets to switches with spare capacity may prevent packet loss.
In this study we identify the main issues that stem from random
packet deflection and address them by introducing Vertigo, a hybrid
design that incorporate end-hosts’ knowledge of the workload and
the network’s immediate reaction capacity to selectively deflect
packets that arrive at full buffers to the neighboring switches. Our
simulation results demonstrate that Vertigo provides up to 3.3×
lower mean incast query completion times and 3× lower 99-%ile
flow completion times compared to DCTCP+ECMP while improv-
ing the mean QCT by 18× when combined with Swift.

ACKNOWLEDGMENTS
We thank our shepherd, Yikai Lin, and all the anonymous CoNEXT
reviewers for their valuable feedback. We also thank Sougol Gheissi
for her help and feedback during the course of the project. This
project was partially supported by a Facebook faculty research
award.

12

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

REFERENCES
[1] 2020. INET Framework. https:// inet.omnetpp.org/ .
[2] 2020. OMNeT++ Simulator. https://omnetpp.org/ .
[3] 2020. Open Tofino. https://github.com/barefootnetworks/Open-Tofino.
[4] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A Scalable,

Commodity Data Center Network Architecture. In SIGCOMM.
[5] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: distributed
congestion-aware load balancing for datacenters. In SIGCOMM.

[6] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data
Center TCP (DCTCP). In SIGCOMM.

[7] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown,
Balaji Prabhakar, and Scott Shenker. 2013. pFabric: minimal near-optimal data-
center transport. In SIGCOMM.

[8] Mark Allman and Ethan Blanton. 2005. Notes on burst mitigation for transport
protocols. SIGCOMM CCR (2005).

[9] Behnaz Arzani, Selim Ciraci, Luiz Chamon, Yibo Zhu, Hongqiang Harry Liu, Jitu
Padhye, Boon Thau Loo, and Geoff Outhred. 2018. 007: Democratically finding
the cause of packet drops. In NSDI.

[10] Behnaz Arzani, Selim Ciraci, Boon Thau Loo, Assaf Schuster, and Geoff Outhred.
2016. Taking the Blame Game out of Data Centers Operations with NetPoirot. In
SIGCOMM.

[11] Z. Abbasi G. Gibson B. Mueller J. Small J. Zelenka B. Welch, M. Unangst and B.
Zhou. 2008. Scalable Performance of the Panasas Parallel File System. In FAST.

[12] Wei Bai, Li Chen, Kai Chen, and Haitao Wu. 2016. Enabling ECN in multi-service
multi-queue data centers. In NSDI.

[13] Neda Beheshti, Petr Lapukhov, and Yashar Ganjali. 2019. Buffer Sizing Experi-
ments at Facebook. In ACM BS.

[14] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi,
Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic In-Band Net-
work Telemetry. In SIGCOMM ’20.

[15] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In IMC.

[16] Steven Blake, David Black, Mark Carlson, Elwyn Davies, ZhengWang, andWalter
Weiss. 1998. An architecture for differentiated services. RFC 2475 (1998).

[17] Alberto Bononi, Fabrizio Forghieri, and Paul R Prucnal. 1993. Analysis of one-
buffer deflection routing in ultra-fast optical mesh networks. In INFOCOM.

[18] Flaminio Borgonovo, Luigi Fratta, and Joseph Bannister. 1993. Unslotted deflec-
tion routing in all-optical networks. In GLOBECOM.

[19] Flaminio Borgonovo, Luigi Fratta, and Joseph A Bannister. 1994. On the design
of optical deflection-routing networks. In INFOCOM.

[20] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, Ori Rottenstre-
ich, Steven A Monetti, and Tzuu-Yi Wang. 2019. Fine-Grained Queue Measure-
ment in the Data Plane. In CoNEXT.

[21] Yang Chen, Hongyi Wu, Dahai Xu, and Chunming Qiao. 2003. Performance anal-
ysis of optical burst switched node with deflection routing. In IEEE International
Conference on Communications, Vol. 2.

[22] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded
Congestion Control for Datacenters. In SIGCOMM.

[23] David D Clark, Scott Shenker, and Lixia Zhang. 1992. Supporting real-time appli-
cations in an integrated services packet network: Architecture and mechanism.
In SIGCOMM CCR.

[24] Alan Demers, Srinivasan Keshav, and Scott Shenker. 1989. Analysis and simula-
tion of a fair queueing algorithm. SIGCOMM CCR (1989).

[25] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon
Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael
Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The
Design and Operation of CloudLab. In ATC.

[26] Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarungnirun,
and Onur Mutlu. 2012. MinBD: Minimally-buffered deflection routing for energy-
efficient interconnect. In IEEE/ACM International Symposium on Networks-on-
Chip.

[27] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.
2014. Cuckoo Filter: Practically Better Than Bloom. In CoNEXT.

[28] Sally Floyd, Andrei Gurtov, and Tom Henderson. 2004. The NewReno Modifica-
tion to TCP’s Fast Recovery Algorithm. RFC 3782.

[29] S. Floyd and V. Jacobson. 1994. The synchronization of periodic routing messages.
IEEE/ACM Transactions on Networking (1994).

[30] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. pHost: distributed near-optimal datacenter transport
over commodity network fabric. In CoNEXT.

[31] Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani, and Mohammad Alizadeh.
2016. Juggler: a practical reordering resilient network stack for datacenters. In
EuroSys.

[32] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. In SOSP.

[33] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data Center
Networks. In SIGCOMM.

[34] Soroush Haeri and Ljiljana Trajković. 2014. Intelligent deflection routing in
buffer-less networks. IEEE Transactions on Cybernetics 45, 2 (2014).

[35] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter
networks and stacks for low latency and high performance. In SIGCOMM.

[36] Keqiang He, Eric Rozner, Kanak Agarwal, Wes Felter, John Carter, and Aditya
Akella. 2015. Presto: Edge-based Load Balancing for Fast Datacenter Networks.
In SIGCOMM.

[37] Chi-Yao Hong, Matthew Caesar, and P Brighten Godfrey. 2012. Finishing flows
quickly with preemptive scheduling. In SIGCOMM.

[38] Ching-Fang Hsu, Te-Lung Liu, and Nen-Fu Huang. 2002. Performance analysis of
deflection routing in optical burst-switched networks. In Annual Joint Conference
of the IEEE Computer and Communications Societies, Vol. 1.

[39] Shuihai Hu, Wei Bai, Gaoxiong Zeng, Zilong Wang, Baochen Qiao, Kai Chen,
Kun Tan, and Yi Wang. 2020. Aeolus: A Building Block for Proactive Transport
in Datacenters. In SIGCOMM.

[40] Hao Jiang and Constantinos Dovrolis. 2003. Source-Level IP Packet Bursts: Causes
and Effects. In IMC.

[41] Hao Jiang and Constantinos Dovrolis. 2005. Why is the Internet Traffic Bursty
in Short Time Scales? SIGMETRICS Perform. Eval. Rev. (2005).

[42] Raj Joshi, Ting Qu, Mun Choon Chan, Ben Leong, and Boon Thau Loo. 2018.
BurstRadar: Practical Real-Time Microburst Monitoring for Datacenter Networks.
In APSys.

[43] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The Nature of Data Center Traffic: Measurements & Analysis. In
IMC.

[44] Rishi Kapoor, Alex C Snoeren, GeoffreyMVoelker, and George Porter. 2013. Bullet
trains: a study of NIC burst behavior at microsecond timescales. In CoNEXT.

[45] Kazuki Kawanabe and Tatsuro Takahashi. 2007. Effective deflection control
method in optical packet switching networks with shared buffers. Electronics
and Communications in Japan (Part I: Communications) 90, 9 (2007).

[46] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit,
and Lawrence J Wobker. 2015. In-band network telemetry via programmable
dataplanes. In SIGCOMM.

[47] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M G Wassel, Xian
Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld,
Michael Ryan, David Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple
and Effective for Congestion Control in the Datacenter. In SIGCOMM.

[48] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: high precision congestion control. In SIGCOMM.

[49] Hwijoon Lim, Wei Bai, Yibo Zhu, Youngmok Jung, and Dongsu Han. 2021. To-
wards timeout-less transport in commodity datacenter networks. In EuroSys.

[50] Zhonghai Lu, Mingchen Zhong, and Axel Jantsch. 2006. Evaluation of on-chip
networks using deflection routing. In ACM Great Lakes symposium on VLSI.

[51] Srihari Makineni, Ravi Iyer, Partha Sarangam, Donald Newell, Li Zhao, Ramesh
Illikkal, and JaideepMoses. 2006. Receive Side Coalescing for Accelerating TCP/IP
Processing. In HiPC.

[52] Jonatas Marques, Kirill Levchenko, and Luciano Gaspary. 2020. IntSight: Diag-
nosing SLO Violations with in-Band Network Telemetry. In CoNEXT.

[53] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve
Gribble, Nicholas Kidd, Roman Kononov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,
Valas Valancius, XiWang, and Amin Vahdat. 2019. Snap: AMicrokernel Approach
to Host Networking. In SOSP.

[54] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based Congestion Control for the Datacenter. In SIGCOMM.

[55] Michael Mitzenmacher, AndrÃľa W. Richa, and Ramesh Sitaraman. 2000. The
Power of Two RandomChoices: A Survey of Techniques and Results. InHandbook
of Randomized Computing.

[56] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-driven Low-latency Transport Protocol Using Network Priori-
ties. In SIGCOMM.

[57] Ali Munir, Ghufran Baig, Syed M Irteza, Ihsan A Qazi, Alex X Liu, and Fahad R
Dogar. 2014. Friends, not foes: synthesizing existing transport strategies for data
center networks. In SIGCOMM.

[58] Aisha Mushtaq, Radhika Mittal, James McCauley, Mohammad Alizadeh, Sylvia
Ratnasamy, and Scott Shenker. 2019. Datacenter congestion control: identifying
what is essential and making it practical. SIGCOMM CCR (2019).

13

https://inet.omnetpp.org/
https://omnetpp.org/
https://github.com/barefootnetworks/Open-Tofino

CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany Sepehr Abdous∗ , Erfan Sharafzadeh∗ , Soudeh Ghorbani

[59] S Narayana, A Sivaraman, VNathan, P Goyal, and others. 2017. Language-directed
hardware design for network performance monitoring. In SIGCOMM.

[60] Abhay K Parekh and Robert G Gallager. 1993. A generalized processor sharing
approach to flow control in integrated services networks: the single-node case.
IEEE/ACM transactions on networking (1993).

[61] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized" zero-queue" datacenter network. In SIG-
COMM.

[62] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In SIGCOMM.

[63] D. Shan, F. Ren, P. Cheng, R. Shu, and C. Guo. 2018. Micro-Burst in Data Centers:
Observations, Analysis, and Mitigations. In IEEE ICNP.

[64] Naveen Kr Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable
calendar queues for high-speed packet scheduling. In NSDI.

[65] X. Shi, L. Wang, F. Zhang, K. Zheng, and Z. Liu. 2017. PABO: Congestion mitiga-
tion via packet bounce. In IEEE ICC.

[66] Madhavapeddi Shreedhar and George Varghese. 1995. Efficient fair queueing
using deficit round robin. SIGCOMM CCR.

[67] Vishal Shrivastav. 2019. Fast, scalable, and programmable packet scheduler in
hardware. In SIGCOMM.

[68] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy
Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand
Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle,
Stephen Stuart, and Amin Vahdat. 2015. Jupiter Rising: A Decade of Clos Topolo-
gies and Centralized Control in Google’s Datacenter Network. In SIGCOMM.

[69] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin
Katti, and Nick McKeown. 2016. Programmable Packet Scheduling at Line Rate.
In SIGCOMM.

[70] Renata Teixeira, Aman Shaikh, Tim Griffin, and Jennifer Rexford. 2004. Dynamics
of hot-potato routing in IP networks. In International Conference on Measurement
and Modeling of Computer Systems.

[71] Vojislav Ðukić, Sangeetha Abdu Jyothi, Bojan Karlaš, Muhsen Owaida, Ce Zhang,
and Ankit Singla. 2019. Is advance knowledge of flow sizes a plausible assump-
tion?. In NSDI.

[72] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let it flow: Resilient asymmetric load balancing with flowlet switching. In
NSDI.

[73] J Woodruff, A W Moore, and N Zilberman. 2019. Measuring Burstiness in Data
Center Applications. In BS.

[74] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Pro-
grammable Switches. In SIGCOMM.

[75] Kyriakos Zarifis, Rui Miao, Matt Calder, Ethan Katz-Bassett, Minlan Yu, and
Jitendra Padhye. 2014. DIBS: just-in-time congestion mitigation for data centers.
In Eurosys.

[76] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In IMC.

[77] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao, Shi Bai, Bo Li, Zhilong
Zheng, Lingjun Zhu, Zhen Shen, Yongqing Xi, Pengcheng Zhang, Dennis Cai,
Ming Zhang, and Mingwei Xu. 2020. Flow Event Telemetry on Programmable
Data Plane. In SIGCOMM.

14

Burst-tolerant Datacenter Networks with Vertigo CoNEXT ’21, December 7–10, 2021, Virtual Event, Germany

A VERTIGO ARTIFACTS
Vertigo artifacts are publicly available in our GitHub super-
repository (https://github.com/hopnets/vertigo-artifacts). The
super-repository points to three public submodules containing the
code for Vertigo simulations, Vertigo host implementation, and
Vertigo switch scheduler implementation. We briefly describe each
module below and refer the readers to individual README files for
a detailed guide on building and running experiments.

A.1 Omnet++ simulations
Available at (https://github.com/hopnets/vertigo_simulations). We
use Ubuntu 18.04, Omnetpp-5.6.2 [2], and INET framework [1] to
run our simulations. The following steps are required to run the
simulations:

(1) Installing Omnet++ simulator
(2) Installing the project’s dependencies
(3) Downloading and building the project modules
(4) Running the simulations and extracting the results

A detailed guide on running the simulations can be found in the
README file.

A.2 Host Implementation
We used two Cloudlab [25] machines as described in §4.4 to deploy
and evaluate host components: marking and ordering. The artifacts
are available at (https://github.com/hopnets/vertigo_host). We rec-
ommend using Mellanox NICs with kernel-bypass support for the
evaluation purposes. A detailed guide on building and evaluating
the host components can be found in the README file.

A.3 Switch scheduler implementation
Finally, the repository (https://github.com/hopnets/vertigo_
scheduler_fpga_implementation) contains Verilog source for
implementing switch scheduler operations based on PIEO [67] for
Intel FPGA devices. Please contact authors for further questions
regarding the artifacts.

15

https://github.com/hopnets/vertigo-artifacts
https://github.com/hopnets/vertigo_simulations
https://github.com/hopnets/vertigo_host
https://github.com/hopnets/vertigo_scheduler_fpga_implementation
https://github.com/hopnets/vertigo_scheduler_fpga_implementation

	Abstract
	1 Introduction
	2 Deflection Routing in Datacenters: Challenges and Opportunities
	3 Vertigo: Timely reaction to microbursts
	3.1 TX Path: Marking Component
	3.2 Selective Deflection in the Network
	3.3 RX Path: The Ordering Component

	4 Performance Evaluation
	4.1 Simulation Setup
	4.2 Large-scale Event-driven Simulations
	4.3 Vertigo Design Deep-dive
	4.4 End-host and Switch Implementation

	5 Related Work
	6 Conclusion
	Acknowledgments
	References
	A Vertigo Artifacts
	A.1 Omnet++ simulations
	A.2 Host Implementation
	A.3 Switch scheduler implementation

