
Towards Correct Network Virtualization

Soudeh Ghorbani and Brighten Godfrey
University of Illinois at Urbana-Champaign

{ghorban2, pbg}@illinois.edu

ABSTRACT
In SDN, the underlying infrastructure is usually abstracted
for applications that can treat the network as a logical or vir-
tual entity. Commonly, the “mappings” between virtual ab-
stractions and their actual physical implementations are not
one-to-one, e.g., a single “big switch” abstract object might
be implemented using a distributed set of physical devices.
A key question is, what abstractions could be mapped to
multiple physical elements while faithfully preserving their
native semantics? E.g., can an application developer always
expect her abstract “big switch” to act exactly as a phys-
ical big switch, despite being implemented using multiple
physical switches in reality?

We show that the answer to that question is “no” for
existing virtual-to-physical mapping techniques: behavior
can differ between the virtual “big switch” and the physi-
cal network, providing incorrect application-level behavior.
We also show that that those incorrect behaviors occur de-
spite the fact that the most pervasive correctness invariants,
such as per-packet consistency, are preserved throughout.
These examples demonstrate that for practical notions of
correctness, new systems and a new analytical framework
are needed. We take the first steps by defining end-to-end
correctness, a correctness condition that focuses on applica-
tions only, and outline a research vision to obtain virtual-
ization systems with correct virtual to physical mappings.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network management

Keywords
Network Virtualization, One Big Switch, Correctness

1. INTRODUCTION
Virtualization refers to the act of decoupling the logical

service from its physical realization [5] with some mapping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’14, August 22, 2014, Chicago, IL, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2989-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2620728.2620754.

between them. Accordingly, full network virtualization solu-
tions strive not only to multiplex multiple virtual networks
on a single physical network (hereafter called many-to-one
mapping), but also to use multiple physical networking ele-
ments to implement a single virtual network (hereafter called
one-to-many mapping) [5, 17, 19]. Many-to-one mapping is
mainly a means to share resources [21], whereas one-to-many
mapping (i.e., implementing a single abstraction using a dis-
tributed set of physical networking elements) provides basic
support for function mobility [8,23], enables a“scale-out”ap-
proach to network design in which additional physical net-
working elements scale-out a single logical abstraction [5],
provides high-availability [5], and overcomes lack of capacity
of physical elements (e.g., when the capacity of one switch
is insufficient for a full implementation of the logical ab-
straction). For example, each tenant in a public data center
might be presented one logical “big switch” abstraction that
may in reality span multiple physical hardware or software
switches. We present more use-cases for one-to-many virtu-
alization in Section 2.

The immediate question is, could the one-to-many map-
ping lead to incorrect behavior in the network? Could
an application that a developer writes on top of its logical
“one big switch” presented to her by the virtualization so-
lutions perform unexpectedly due to the one-to-many map-
ping of the intended abstract functionalities to the physical
switches? In Section 3, we provide several examples of
the incorrect behaviors caused by existing realiza-
tions of one-to-many mapping: a NAT that erroneously
drops packets, and a firewall that erroneously blocks hosts.
We also note that those erroneous behaviors happen while
the network is still meeting the most commonly-used cor-
rectness and consistency requirements defined by previous
work, such as “per packet consistency” or “per flow consis-
tency” [20] the whole time. Interestingly, deploying the
techniques that are specifically designed to preserve
those consistency requirements could occasionally
break the otherwise correct behavior (Section 5.1).

In light of those observations, we argue that for practical
notions of correctness, new systems and a new analytical
framework are needed. While focusing on trace properties
of a packet (or flow), i.e., the invariants related to the hop-
by-hop journey of a single packet (or flow) in the network
[11,12,18,20], is invaluable in preventing certain classes of in-
correct network behaviors such as loops, black-holes, or con-
gestion, it is far from sufficient for today’s networks. Thus,
there is a need for defining a new notion of correctness that
takes into account the sequence of observations made by the

controller and end-hosts, with potential interdependencies.
Towards this goal, we present the initial sketch of a proba-
bilistic model of SDN that also considers the partial ordering
between events and define correctness of virtualization us-
ing that model (Section 5.2). In tune with what applications
expect from best-effort networks with occasional packet re-
ordering, this model is general enough to be permissive of
occasional packet drops, and allows some packet re-ordering.

We elaborate on the root-causes of wrong behaviors that
could occur under the one-to-many mapping (initially, qual-
itatively), in Section 4: by borrowing from the seminal work
on ordering of events in distributed systems by Lamport [16],
we elaborate on the distinction between causality and order-
ing of events in SDN, and show that while causality of send-
ing and receiving packets is preserved under the one-to-many
mapping (i.e., a packet will be causally generated by another
packet in the physical network if and only if it is supposed
to be causally generated by that same packet in the logi-
cal abstract network), the ordering of packets is not always
preserved under the one-to-many mapping. In Section 5.3,
we show that under the existing realizations of one-to-many
mapping, abstractions that are Markov or memoryless (i.e.,
their actions do not depend on the history of previous match-
ing packets or previous actions) could be correctly mapped,
and that they are the only class of abstractions that could
be correctly mapped under the existing schemes.

By demonstrating the unexpected behaviors that could re-
sult from a common virtualization technique (one-to-many
mapping), and showing the need for a different notion of
consistency and correctness, this work tries to open up an
important line of research for (a) defining alternative cor-
rectness notions and (b) building provably-correct virtual-
ization systems to realize the one-big switch idea.

2. BACKGROUND AND MOTIVATION
One-to-many virtualization implements a single virtual

abstraction using multiple physical elements. Use-cases
for one-to-many virtualization include building distributed
virtual switches: Even though host-hypervisors provide vir-
tual switches to control the network at one end-host, the dy-
namic nature of virtual environments such as VM migration,
spinning up new VMs on other end-hosts that should be con-
nected to the same virtual network used by VMs on different
hosts, etc. requires these abstract virtual switches to be im-
plemented using a distributed set of physical switches [5]. In
this case, one logical switch is in reality implemented with
a distributed set of virtual switches. As another example,
Andromeda (Google’s virtualized SDN) [3], integrates soft-
ware network function virtualization (NFV), such as virtual
firewall, rate limiting, etc. into the data-path, and deploys
replication (one functionality mapped to multiple physical
elements) in the data-plane as a technique to meet its per-
formance and scalability needs. The physical replicas, in this
case, collectively represent a logical network. Rule or flow
table entries caching schemes, where topologically-mapped
“rule caches” at multiple locations in the network concur-
rently handle traffic for enhancing performance [22], are
another instance of implementing logical abstractions via a
distributed set of physical networking elements. In this
section, we discuss the common logical or virtual abstrac-
tions provided by virtualization solutions before discussing
how some existing systems map those virtual abstractions
to physical forwarding elements.

2.1 Choosing the Right Logical Abstractions
The first design challenge of network virtualization is the

choice of the right abstractions. While there exist some net-
work virtualization solutions that (partially) virtualize the
network at the lower levels, e.g., with tunnels and tags, and
some solutions that try to virtualize the network at higher-
level interfaces [4,10,19], it is generally argued that a useful
layer at which to virtualize is the full forwarding plane [5],
and that existing SDN forwarding plane abstractions such
as flow table entries are the right logical abstractions to
present when virtualizing the network [2, 15]. In this work,
we focus on the solutions that provide forwarding abstrac-
tions similar to flow table entries.

Upon receiving a packet, a switch executes a set or an
ordered list of actions of the highest priority flow table en-
try that matches the packet. These actions could result in
changes in the packet, dropping it, or forwarding it. The
actions are determined by the header of the packet and its
ingress port, as well as the forwarding state of the flow ta-
ble entry: different components of the flow-table entry that
affect the forwarding decision such as match fields, timers,
and meter tables. From the programmability perspective,
the forwarding state could be categorized based on the en-
tities that compute and modify it:

• Forwarding state computed and modified solely
by controllers. Examples include layer 1 (switch
port) to layer 4 match fields of a flow-table entry.

• Forwarding state computed or modified by switches
locally and without consulting the controllers. Exam-
ples include random forwarding, e.g., for supporting
ECMP, and hard timeouts.

• Forwarding state computed or modified by data
plane packets (as opposed to control and manage-
ment packets) locally and without consulting the con-
trollers. For example, soft timeouts measure idle
time and are updated by matched packets, thus affect-
ing when a flow table entry expires. Packet counters
that are updated when packets are matched and could
determine the forwarding decision in round-robin for-
warding [1], and flow meters used for making the for-
warding decision based on the rate of the flow matching
the flow table entry [1] are other examples.

As we will show, the above categorization of forwarding
state, based on entities in charge of “programing” the for-
warding state, plays a key role in determining whether or
not the flow-table entry could be correctly virtualized under
the existing mapping techniques.

2.2 One-to-Many Mapping
Starting with the simplest case, in this work, we focus

on mapping a logical flow table entry abstraction to a dis-
tributed set of physical flow table entries where each physical
flow table entry is individually capable of fully implement-
ing the logical flow table entry. In the one-to-many mapping
technique, before installing a flow table entry on multiple
physical flow tables, the hypervisor typically performs some
modifications to the actions and forwarding state of any logi-
cal flow table entry. Specifically, the actions and forwarding
state computed by the controller and switches are usually
subject to (a) Topological modifications: In the “match

fields” and “actions”, a logical flow table entry could contain
a set of logical ports that need to be mapped to physical
ports to account for the possible distinctions between the
physical and logical topologies [5,8]. Those logical ports are
translated to corresponding physical ports before the logi-
cal flow table entry is installed on physical flow tables. (b)
Address translation: Ideally, each virtual network should
operate in a virtual address space that is decoupled from
the physical network address space and the virtual address
spaces of other virtual networks [15]. In this scenario, the
network hypervisors are in charge of address space transla-
tion. (c) Rule-cloning: One wildcard flow table entry is
sometimes “cloned” to multiple entries in which all of the
wildcarded fields are replaced by exact-match values and all
other aspects of the original entry are inherited [6,15]. This
mechanism is used in software switches for caching the wild-
card entries residing in the userspace as exact-match entries
into a flow table in the kernel to enhance performance, e.g.,
in Nicira’s NVP [15].

Hence, while the one-to-many mapping makes some mod-
ifications in the actions and forwarding state computed and
modified by the controller and switches, other components
of the logical and physical flow table entries, i.e., those mod-
ified or computed by the packets, can remain identical. We
will see in examples in the next section that this is the root
cause of one subclass of incorrect behaviors.

Trivially, each single physical flow table entry is a faith-
ful implementation of the logical abstraction in isolation.
I.e., if the logical single flow table entry was in fact im-
plemented via a single element only, that single flow table
entry would act indistinguishably from the logical abstrac-
tion. In particular, if sending one packet by one application
that matches the logical entry results in receiving a set of
(potentially modified) packets by a set of applications (on
end-hosts or the controller), then sending the same packet
via any mapped physical flow table entry leads to receipts of
the same set of packets by the same set of applications. Sim-
ilarly, if all the mapped physical flow table entries could be
serialized or consistently synchronized, their collective be-
havior would still be indistinguishable from the logical ab-
straction. In practice, however, due to performance and scal-
ability requirements, attempting to serialize and synchro-
nize those physical mapped flow table entries to provide an
always-consistent logical view is not feasible [2, 22]. Hence,
after a logical abstraction is mapped to multiple physical
flow table entries under the one-to-many mapping, those
entries handle traffic autonomously. The main question of
this paper is, what types of abstractions could be correctly
mapped to multiple physical flow table entries?

3. ONE-TO-MANY MAPPING:
WHAT COULD GO WRONG?

We show a few illustrative examples in which the common
technique for realizing a one-to-many mapping can break the
semantics of the logical network and lead to incorrect behav-
ior — blacklisting legitimate hosts, or dropping packets that
should be delivered1. We then discuss the root cause of these
incorrect behaviors.

1Other examples of incorrect behavior, e.g., overutilizing
servers are omitted due to space constraints and can be
found in [7].

Example 1: Logical Firewall. Imagine that an enter-
prise network has a logical stateful firewall at the periph-
ery of its network that permits an external server to talk
to an internal client if and only if the client has sent a re-
quest to the server. This simple policy could be achieved
by a stateful-firewall application running on the controller,
and two low priority flow table entries on the logical switch:
One entry that matches internal client traffic and sequen-
tially performs the following two actions on it: (1) it sends
the packet header to the controller to trigger installation of
a rule permitting server traffic in the reverse direction to be
sent to the client, and (2) it forwards the traffic to the server.
And a second flow entry that that matches the server traffic
and sends it to the controller to check if it is permissible.

Also, server-to-client and client-to-server “packet-in”s are
required to be sent over the same connection between the
switch and the controller, e.g., the main TCP connection.2

When the firewall application receives server traffic, (a) if
the server traffic is preceded by the corresponding client’s
request, the firewall application installs a high priority flow
table entry on the switch to forward the server-to-client traf-
fic, (b) if the server traffic is not preceded by the client’s
request, then the firewall application blacklists the server
by installing a high priority flow table entry that drops the
packets from the server.

Now, if that logical switch, L, is in reality mapped to
more than one physical switch, then the client-to-server traf-
fic could traverse one physical switch, P1, and the resulting
server-to-client traffic traverses a different physical switch
P2. In this case, the response traffic and the server-to-client
“packet-in” may reach P2 and the controller before the con-
trol message from P1 reaches and is processed by the con-
troller. Hence, the controller proceeds to install a rule to
block all traffic for that flow—an undesirable outcome and
something that would not happen if the single logical switch
L were implemented as a single physical switch.

We first noticed this incorrect behavior in an earlier work [8]
in which, for efficient network migration, a logical rule needed
to be temporarily mapped to multiple physical rules: the
initial physical source of the rule and its final physical des-
tination. Given the temporary nature of the one-to-many
mapping in that setting, this issue was resolved by identify-
ing all “unsafe” rules – those that both forward traffic and
send a message to the controller – and temporarily modify-
ing them to instead only send to the controller. This solution
inherently enforces a message ordering that respects the de-
pendencies between events and solves this particular issue.
If the one-to-many mapping is not temporary, as in imple-
menting a virtual big switch with multiple physical switches,
however, such interventions are less satisfactory.

Example 2: Network Address Translation. Con-
sider a Network Address Translation (NAT) application that
hides the private network IP address space of an enterprise
behind a single public IP address. The policy that is in-
tended to be implemented via the NAT is to allow commu-
nication between internal and external hosts when the con-
versation originates from the masqueraded internal hosts.
External hosts that are allowed to communicate with the
internal hosts will lose the permission to do so after a pe-

2Note that the main control channel in OpenFlow 1.4 pro-
vides in-order and reliable delivery, i.e., a client’s request is
guaranteed to reach the controller before the reply that it
triggers.

riod of inactivity, e.g., an active connection will be closed if
the external host doesn’t send a packet for (say) 60 seconds.

This policy could be implemented via a NAT controller
application and a single logical switch at the edge of the
enterprise network. The application stores a stateful trans-
lation table to map the internal hidden addresses into the
single public IP address, and upon receiving a “packet-in”
for an outgoing flow, it installs two rules on the switch: (a)
a rule to rewrite the port and source address of outgoing
packets so they appear to originate from the single public
IP address, and (b) a rule for the reverse communication
path, to rewrite the port and IP address of responses back
to the originating IP addresses with a soft timeout such that
the rule is flushed after 60 sec unless new traffic refreshes the
local timer of the switch.

Now, if this one single logical NAT is in reality mapped to
multiple physical switches, an external host’s responses to
a request could hit different physical switches. Hence, the
time-series of packets hitting each physical switch could be
different from the case where all traffic goes through a single
switch. E.g., while no two packets of a flow would be spaced
by more than 60 sec if they hit the same switch, the gap
between two consecutive packets hitting one of the many
physical switches could be larger than 60sec. This might, in
turn, trigger the timeouts in some physical switches (which
will in turn cause the external host to lose its connection to
the internal host); something that will not occur if all traffic
goes through a single physical switch.

Despite the differences among the examples above, they
share some commonalities:

• Some of the operations in those examples have depen-
dencies on the sequence of packets proceeding them
(e.g., timers updated by previous packets).

• Despite the visibly-incorrect behavior, some of the most
pervasive notions of correctness in networking (such as
loop-freedom, absence of blackholes, per-packet consis-
tency, etc. [11–14,18,20]) are met throughout.

• There are alternative ways of implementing the exact
same policy (sometimes with subtle differences from
those implementations described above) for which the
one-to-many mapping would not lead to incorrect be-
haviors.

We discuss these issues in Sections 4 and 5.

4. ORDERING OF SENDING AND RECEIV-
ING PACKETS IN SDNS

In the previous section, we showed some examples of in-
correct behaviors resulting from the one-to-many mapping.
In those examples, under the one-to-many mapping, the con-
troller or end-host applications could observe orderings be-
tween events that are different from the orderings that they
expect to observe in the logical network. In the firewall ex-
ample, for instance, with the logical view of a single switch,
the controller expects to receive a request before it receives
the corresponding reply. These examples demonstrate that
even in the typical current networks that are not assumed
to provide in-order delivery, some orderings are assumed to
be always preserved between certain events and observable
to applications. Application logic, consequently, could de-
pend on those orderings (e.g., allowing the communication

if the reply is received after the request, but disallowing it
otherwise). We borrow some definitions and insight from
the seminal work of Lamport on ordering of the events in
a message passing distributed system [16] before examining
the factors that determine the orderings in SDN and the rea-
sons that they could break under the one-to-many mapping.

Happened before relationship. In the absence of syn-
chronized physical clocks, what orderings between send and
receive events are observable by processes in a distributed
message passing system that could re-order the messages?
In search for an answer to this question, the pioneering work
of Lamport defines the happened before relationship (→) on
the set of events in a message passing system to be the small-
est relation satisfying the following three conditions [16]: (a)
If a and b are events in the same process, and a comes before
b, then a happens before b, i.e., a → b. (b) If a is the send-
ing of a located packet by one process and b is the receipt
a of the located packet by another process, then a happens
before b. (c) If a happens before b, and b happens before c,
then a happens before c. The happened before is a partial
ordering, i.e., not every pair of events can be related by it.

Happened before is not equivalent to causality. De-
spite the fact that an alternative way of viewing the defini-
tion of happened before is to say that a→ b means that it is
possible for event a to causally affect event b [16], it should
be noted that it is not required for a to causally affect b.
While it is true that a → b if an event b is causally gener-
ated by event a, the reverse is not always true. I.e., a → b
might be an observable ordering between a and b even with-
out any causal relationship between them. In the correct
realization of the firewall example, for instance, the event of
receiving the reply at the controller (e2) is not causally gen-
erated by the event of receiving the request at the controller
(e1). Yet, e1 → e2 is required for the correct operation of
the firewall application. In SDN, the ordering of two sending
and/or receiving events might be known (e.g., a→ b) with-
out any causality relationship between them (e.g., neither a
causes b, nor b causes a). E.g., in a network that reactively
installs flow rules with timeout, the controller could receive
a second packet-in from a flow after the first one because
the flow entry matching the flow has been removed after a
certain period of time and not because the second packet-
in was caused by the first one. Hence, the local state of
the switch, which is affected by the sequence of the previ-
ous packets that matched the flow table entry, could affect
the ordering of events. In addition to causality and local
state, existence of channels that provide in-order message
delivery, like the control channel in OpenFlow 1.4, could de-
termine the ordering of events. The firewall example shows
one instance of the influence of the ordered channel on the
ordering of events.

To summarize, event dependencies are key to correctness.
In Section 3, we provided several examples of application
logic that depends on the orderings of events, i.e., an event
depending on some events that happened before it, and demon-
strated how the one-to-many mapping could violate those
orderings, and consequently the correctness of applications.
In Section 5, we sketch a new analytical system and defi-
nition of correctness to argue that the logical abstractions
that have no dependency on the events that happen before
them, and only that class of abstractions, could be correctly
implemented under the one-to-many mapping techniques.

Figure 1: “Consistent updates” could lead to unex-
pected application behavior.

5. MODELING SDN AND DEFINING
CORRECTNESS

The first challenge in providing correct mappings is find-
ing a practical notion of correctness. In this section, we first
show the most pervasive notions of correctness cannot cap-
ture the incorrect behavior demonstrated in §3. We further
elaborate on the insufficiency of existing notions by an il-
lustrative example (without the one-to-many mapping) in
which deploying the techniques used for meeting per-packet
consistency breaks the otherwise correct behavior.

5.1 Per-packet Consistency Is Not Enough
Existing notions of network correctness mostly focus on

the journey of a single packet or flow. Some notions involve
specific policies like absence of loops and black holes [11,18],
which often arise due to network dynamics. A more inclu-
sive notion of correctness is per-packet (or per-flow) consis-
tency, which guarantees that every packet (or flow) travers-
ing the network is processed by exactly one global network
configuration and never by a mix of two (or more) configu-
rations [20].

While this requirement prevents some anomalies such as
loops and black-holes, it falls short of detecting incorrect be-
haviors from end-points’ perspective, because it cannot cap-
ture violations of the dependencies between different packets
(or flows), such as ordering between them. In the firewall
example, for instance, the policy generated by the firewall
depends not only on the packets that the controller appli-
cation receives, but also on their orderings, e.g., it permits
the communication if the internal host’s request is received
before the reply from the external host and will otherwise
block the communication. In these examples, each packet
and flow is never handled by a mixture of policies. Hence,
per-packet (or flow) consistency is preserved, despite the vis-
ible incorrect behavior.

To better illustrate that current consistency definitions are
insufficient for some practical uses, we give a simple exam-
ple (with no one-to-many mapping) showing that the mecha-
nism usually deployed for preserving per-packet consistency,
i.e., tagging packets and rules using the policy ID and in-
cluding the tags in the lookup operations [11, 20], leads to
incorrect behavior. Assume that a data center tenant in-
tends to classify her traffic based on the applications that
generated it (e.g., using the port IDs of applications), and
then process traffic from different classes differently. A sim-
ple way to implement this policy is to deploy different logical
units for processing traffic from each class of applications,
and to have another logical unit as a “classifier” which is re-
sponsible for forwarding each packet to the unit associated
with the application that generated the packet. In Figure 1,

for example, the tenant sends the packets generated by a
certain application x, with port id = X, to a deep packet
inspection box (DPI) which inspects packets and drops them
if they are being sent from hosts A and B. Let’s call this
policy P1. Now, assume that the tenant decides to switch
from policy P1 to policy P2 that does simple forwarding
for traffic from application x. The only affected module
by this policy update is the “classifier” that should simply
change its R1 rule to forward to port 2 instead of port 1:
(port id = X) → fwd(2). At any point during the update
process, if A (or B) receives an application-x packet from B
(or A), it can logically infer that the policy update has been
done and could reply by sending application x packets.

However, if the network uses the“consistent updates”mech-
anism for updating the policies, the update mentioned above
will not longer be an atomic single step update, because the
flows using rule R1 on the classifier need to be updated one
by one. Without loss of generality, assume that the flow
from A to B is updated, but other flows (including the one
from B to A) are not still updated. In this case, the clas-
sifier will have 2 rules corresponding to R1 on the classifier
in Figure 1 (not shown): an old rule to match traffic using
old tags (old policy traffic) and the new rule matching traf-
fic with new tags (new policy traffic). Now, host A sends
application-x traffic with the new tag, which will be for-
warded to B (new policy). B receives the packet, and since
it sees an application-x packet from A, it concludes that x
is no longer blocked and replies back using application x.
Its reply to A, however, will be delivered to DPI and not A
(since it has the old tag), something that would not happen
if “consistent updates” was not being used for updating the
policy. The underlying problem in this case is that “con-
sistent updates” breaks the atomicity that would otherwise
exist.

5.2 End-to-end Correctness
The previous examples demonstrate that rather than fo-

cusing solely on the trace properties of a single packet or
flow, it is essential to for a correctness model to capture the
observations that end-host and controller applications can
make. Towards this goal, we sketch a probabilistic model
on a partially ordered set of events that the controller and
end-hosts could observe. This new model could be permis-
sive of occasional packet-loss (as best-effort networks are),
of random forwarding (e.g., to permit ECMP or other ran-
dom forwarding capabilities that are invaluable for traffic
engineering [9]), and of re-ordering of some packets. A one-
to-many mapping of a logical flow table entry L to a set
of physical flow table entries P is said to be an end-to-end
correct mapping, iff for any partially ordered (defined by
the happened before relation) set of events, E, probability of
observing E, by any arbitrary application, while having L
in the network is similar to the probability of observing E
while having P , i.e., PrL[E] ≈ PrP [E]. For the purposes
of correctness, similarity should distinguish between events
that happen sometimes, always, and never; but, probabili-
ties 0.2 and 0.3, for example, can be considered similar in
order to allow for differences in packet loss or timing that
do not affect correctness.

5.3 Memoryless Packet-handling Operations
In Section 4, we informally showed that the one-to-many

mapping could change the observable ordering of events: if

packet processing depends on the history of previous pack-
ets (e.g., forwarding decision for a packet depends on other
packets that have changed the counter or the timer) or if
packet processing depends on prior actions (e.g., packet is
forwarded to the host only after it is sent to the controller),
then the logical and physical networks could behave differ-
ently. This happens because each mapped physical flow ta-
ble entry that handles the traffic could have a different lo-
cal history which is different from the global history of the
logical flow table entry. Intuitively, this demonstrates the
significance of the memoryless property of packet-handling
(i.e., each action not depending on the history of previous
received packets or actions) for the correctness of the one-to-
many mapping. We introduce the key lemmas and theorems
related to the memoryless property below. Formal defini-
tions and a sketch of the proofs are omitted due to space
constraints and can be found in [7].

Lemma A: No dependency between “send actions” of
a flow table entry is observable in the absence of ordered
channels.

Lemma B: Ordering of two send actions of a flow ta-
ble entry is observable if and only if the first send event is
sending a packet over an ordered channel.

Theorem: A Markov (memoryless) property of send events
of a flow table entry is necessary and sufficient for end-to-end
correctness of the one-to-many mapping of that entry.

6. DISCUSSION AND CONCLUSION
Our results open up an important research direction: How

do we automatically enable one-to-many virtualization while
guaranteeing correctness? Our preliminary results in this
paper provide a starting point, showing that a certain class
of (Markov) behaviors can be mapped easily. However, many
useful applications lie outside that space. Research direc-
tions include: (a) developing more advanced mapping tech-
niques, e.g., techniques that detect the flow table entries
that could trigger incorrect behavior and find alternative
correct implementation for them, or (b) restricting the API
of SDN to provide safe-to-map abstractions only (i.e., ab-
stractions that possess a Markov property). For example,
flow table entries with coarse-grained soft-timeouts (that
are non-Markov) could be mimicked by using “permanent”
Markov flow table entries and periodically polling the traffic
counters to see if any traffic has matched the entries since
the previous poll. These solutions, however, could be heavy-
weight, decrease efficiency, add to the delay, and increase the
control overhead (e.g., to involve the controller in some traf-
fic handling tasks that could be purely done by the forward-
ing plane). While there is purportedly a trade-off between
performance and correctness for achieving correct mapping,
it is not obvious if that trade-off is fundamental. We believe
that searching for simple, general solutions with carefully
measured trade-offs warrants further and deeper investiga-
tions.

Acknowledgment: We would like to thank Jennifer Rex-
ford, Cole Schlesinger, and David Walker for their insightful
comments and discussions. We gratefully acknowledge the
support from NSA through Science of Security grant 2014-
03124.

7. REFERENCES
[1] OpenFlow Switch Specification, version 1.4.0. Technical

report, Open Networking Foundation, 2013.

[2] ONS 2014 Keynote: A. Greenberg, Microsoft Azure, 2014.

[3] ONS 2014 Keynote: A. Vahdat, Google, 2014.
[4] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude,

N. McKeown, and S. Shenker. Rethinking Enterprise
Network Control. CCR, 2009.

[5] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker.
Virtualizing the network forwarding plane. In PRESTO,
2010.

[6] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. Devoflow: scaling flow
management for high-performance networks. SIGCOMM,
2011.

[7] S. Ghorbani and B. Godfrey. Towards Correct Network
Virtualization. Technical report, CS UIUC, 2014.
http://goo.gl/ks9Fp9.

[8] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller,
M. Caesar, J. Rexford, and D. Walker. Transparent, Live
Migration of a Software-Defined Network. Technical report,
CS UIUC, 2013. http://goo.gl/yzVgGN.

[9] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A Scalable and
Flexible Data Center Network. In SIGCOMM, 2009.

[10] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith. Implementing a distributed firewall. In CCS, 2000.

[11] J. P. John, E. Katz-Bassett, A. Krishnamurthy,
T. Anderson, and A. Venkataramani. Consensus routing:
The Internet as a distributed system. In NSDI, 2008.

[12] N. P. Katta, J. Rexford, and D. Walker. Incremental
consistent updates. In HotSDN, 2013.

[13] P. Kazemian, G. Varghese, and N. McKeown. Header Space
Analysis: Static Checking For Networks. In NSDI, 2012.

[14] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. Godfrey.
VeriFlow: Verifying Network-Wide Invariants in Real Time.
In NSDI, 2013.

[15] T. Koponen, K. Amidon, P. Balland, M. Casado,
A. Chanda, B. Fulton, I. Ganichev, J. Gross, N. Gude,
P. Ingram, et al. Network virtualization in multi-tenant
datacenters. In NSDI, 2014.

[16] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM,
21(7):558–565, 1978.

[17] M Ciosi et al. Network functions virtualization. Technical
report, ETSI, 2013. http://goo.gl/Q84Bxi.

[18] R. Mahajan and R. Wattenhofer. On Consistent Updates in
Software-Defined Networks. In HotNets, 2013.

[19] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker. Composing software defined networks. In NSDI,
2013.

[20] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In
SIGCOMM, 2012.

[21] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the
production network be the testbed? In OSDI, 2010.

[22] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with DIFANE. In SIGCOMM, 2011.

[23] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking
virtual network embedding: substrate support for path
splitting and migration. CCR, 2008.

