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Bursts, sudden surges in network utilization, are a significant root cause of packet loss and high latency in

datacenters. Packet deflection, re-routing packets that arrive at a local hotspot to neighboring switches, is

shown to be a potent countermeasure against bursts. Unfortunately, existing deflection techniques cannot be

implemented in today’s datacenter switches. This is because, to minimize packet drops and remain effective

under extreme load, existing deflection techniques rely on certain hardware primitives (e.g., extracting packets
from arbitrary locations in the queue) that datacenter switches do not support. In this paper, we address the

implementability hurdles of packet deflection. This paper proposes heuristics for approximating state-of-the-

art deflection techniques in programmable switches. We introduce Simple Deflection which deflects excess

traffic to randomly selected, non-congested ports and Preemptive Deflection (PD) in which switches identify

the packets likely to be selected for deflection and preemptively deflect them before they are enqueued. We

implement and evaluate our techniques on a testbed with Intel Tofino switches. Our testbed evaluations

show that Simple and Preemptive Deflection improve the 99
𝑡ℎ

percentile response times by 8× and 425×,
respectively, compared to a baseline drop-tail queue under 90% load. Using large-scale network simulations,

we show that the performance of our algorithms is close to the deflection techniques that they intend to

approximate, e.g., PD achieves 4% lower 99
𝑡ℎ

percentile query completion times (QCT) than Vertigo, a recent

deflection technique that cannot be implemented in off-the-shelf switches, and 2.5× lower QCT than ECMP

under 95% load.
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1 INTRODUCTION
Datacenters have long been plagued by traffic burstiness [10, 19, 36, 84]. Bursts make performance

unpredictable and result in excessive queueing delay and packet drops [6, 19, 55, 82, 84]. These

performance anomalies are especially problematic for today’s increasingly distributed and tail-

sensitive workloads with tight latency requirements such as distributed machine learning workloads

[30, 50, 59]. Bursts are unpredictable and can last as short as a few microseconds, making burst

management challenging [36, 64, 84]. Managing bursts is further compounded by the trend of

deploying increasingly shallow buffered switches in datacenters [38]. Preventing the formation of

bursts is also difficult due to the wide variety of their root causes, such as scheduling, in-network

collisions, ACK compression, and segmentation offloading [10, 12, 44, 45, 48, 57, 66, 84].
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Packet deflection has recently been proposed as a powerful technique to defuse bursts [6, 70, 82].

As a descendant of hot potato routing [75] and commonly deployed in networks with scarce and

expensive buffer space, such as optical networks [20–22, 25, 39, 41, 49], networks-on-chip [28, 56],

and ATM switching [16, 31, 47, 62, 83], deflection is having a revival in datacenter networks. With

packet deflection, when a packet arrives and the output buffer is full, the switch re-routes the packet

to a neighboring switch instead of dropping it. A naive implementation of deflection causes various

challenges such as excessive packet reordering, congestion collapse, and head-of-line blocking

for short flows. Recent proposals resolve these challenges and show the power of deflection in

managing datacenter bursts [6, 70, 82]. One major hurdle remains: datacenter switches cannot

implement the existing deflection techniques. This blocks their deployment despite their effective

handling of bursts. This paper addresses this challenge.

We dissect the recently proposed datacenter deflection techniques, identify the elements that

prevent them from being implemented in programmable switches (§2), provide heuristics to ap-

proximate these techniques (§3), implement them in Intel Tofino programmable switches (§4),

and demonstrate the practicality and the power of deflection in managing datacenter bursts via

extensive testbed and simulation experiments (§5). We classify deflection techniques into two broad

categories: (1) Simple Deflection, a basic defensive mechanism against bursts that re-routes burst

packets to neighboring switches, effectively defusing bursts when the degree of the load is low,

and (2) Selective Deflection that differentiates between short bursts and long-lasting congestion,

and treats them differently, e.g., by deflecting microburst packets and dropping the packets of a

lasting congestion event. Selective Deflection is motivated by the fact that Simple Deflection fails

under load. For instance, while DIBS [82], a state-of-the-art Simple Deflection technique, reduces

the average query completion time (QCT) by 3.5× compared to ECMP under 35% load, its mean

QCT is 2× higher than ECMP under 95% load. This is because deflected packets traverse longer

paths and increase the overall network utilization in an already congested network [6]. Selective

Deflection’s differential approach helps it remain performant under extreme load: while DIBS

increases the tail (99
𝑡ℎ

percentile) QCT by 2× compared to ECMP under 95% load, Vertigo [6], a

state-of-the-art Selective Deflection technique, improves the tail QCT by 5×. Alas, implementing

Selective Deflection requires extracting already enqueued packets from switch buffers (e.g., to make

room for higher priority packets) which is not supported by existing datacenter switches. Similarly,

to avoid simply redirecting the bursts to a different hotspot and reducing packet drops, Simple

Deflection techniques such as DIBS filter out the ports toward the neighboring switches with a full

buffer before deflecting a packet. This operation is key to Simple Deflection’s efficiency, e.g., under
55% load, filtering out congested ports reduces the number of packet drops and average latency

under Simple Deflection by 46× and 3×, respectively, compared to a similar baseline that does not

filter out the congested ports. Alas, this is challenging to implement since it requires visibility into

buffer occupancy in the ingress pipeline,
1
maintaining a list of non-congested ports at all times,

and randomly selecting from it for every incoming packet.

This paper proposes methods for implementing both categories of deflection in programmable

hardware. We tackle the implementability challenges of Selective Deflection by proposing the

notion of Preemptive Deflection (PD). The fundamental idea behind Preemptive Deflection is to

identify packets that are likely to be selected for deflection in the future and preemptively deflect

them as they arrive. To realize Preemptive Deflection, we design an admission control scheme that

uses the relative priority of a newly arrived packet, i.e., the priority of the new packet compared to

1
While being available in recent programmable hardware, such as Tofino 2 [5], the queue occupancy information is not

accessible at the ingress pipeline in the earlier releases of programmable switches, such as Tofino 1 [3, 80]. To address this,

we can use special packets that recirculate in the switch and transfer the queue occupancy information from the egress to

the ingress pipeline [80].
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the packets inside the destination queue, and the destination queue occupancy to decide whether to

enqueue or deflect it. Similarly, the admission control technique uses the packet’s priority relative

to the packets inside the deflection port’s queue and the deflection port’s queue occupancy to

determine if the deflected packet should be enqueued or dropped. To make Simple Deflection

implementable, we design a high-performance mechanism to share queue occupancy information

between switch pipelines. To synchronize the state in ingress and egress pipelines, we use data

structures that are constantly updated by the data packets, i.e., packets flowing between the end-

hosts in datacenters, and control packets, i.e., packets recirculating in a switch carrying the state

data. We also propose a random number generation technique that operates on the queue occupancy

data structure and selects a non-congested port uniformly at random for packet deflection.

We implement and evaluate our techniques in an Intel Tofino testbed. Our results show that

Simple and Preemptive Deflection improve the 99
𝑡ℎ

percentile response time of high-priority TCP

flows by 8× and 425×, respectively, compared to a droptail queue baseline under 90% load. Using

large-scale simulations, we also evaluate our designs while operating alongside a diverse set of

congestion control techniques including the fastest ones (e.g., Bolt [13] with a sub-RTT control

loop) and the ones designed to control large-scale bursts, e.g., Swift [54]. Our results show the

power of our deflection techniques in improving the performance of all these congestion control

algorithms, e.g., with Swift under 95% load, PD outperforms ECMP, AIFO
2
, and DIBS by finishing

the incast queries 2×, 9×, and 3× faster, respectively. We show that packet deflection also benefits

Bolt by absorbing bursts locally. Specifically, in conjunction with Bolt, preemptively deflecting

packets results in 2.5× and 2× lower tail QCT than ECMP and DIBS, respectively, under 95% load.

In summary, this paper enables practical implementations of packet deflection in datacenters.

2 PACKET DEFLECTION: CHALLENGES AND OPPORTUNITIES
In this section, we explain (a) the fundamental idea behind deflection and the challenges that its

naive realization creates, (b) how the state-of-the-art deflection techniques resolve these challenges,

and (c) why these techniques cannot be implemented in programmable datacenter switches.

(a) Deflection and its challenges. Datacenter traffic studies unveil bursts, periods of high

utilization, that cause packet drops and impose extra latency [10, 36, 84]. Given the pervasiveness

of shallow buffered switches in datacenters, recent studies propose packet deflection, re-routing the

packets that arrive at local hotpots instead of dropping them [6, 70, 82]. Intuitively, this is effective

in defusing bursts. However, if applied naively, deflection creates various challenges: (i) if blindly

redirected to other hotspots, deflected packets can still be dropped, (ii) deflected packets traverse

longer paths and experience higher latency, and (iii) deflection increases the overall utilization and

leads to head-of-the-line blocking in switch buffers for latency-sensitive flows.
3

(b) Recent deflection techniques address these challenges.We divide the state-of-the-art

deflection techniques into two broad groups: 1) Simple Deflection techniques such as DIBS [82] and

Pabo [70] that deflect packets arriving at congested ports to neighboring switches and 2) Selective

Deflection techniques such as Vertigo [6] that distinguish between short and long bursts and treat

them differently, observing that many of the pitfalls of deflection stem from indiscriminate handling

of short, local bursts and lasting, global congestion.

2
AIFO [80] is an admission control paradigm that approximates SRPT scheduling in programmable switches.

3
Packet deflection also leads to packet re-ordering and subsequently reduces throughput. Datacenter deflection techniques

resolve this issue by deploying host-side techniques, e.g., DIBS [82] disables the fast re-transmission process in congestion

control protocols such as DCTCP which reduces the sending rate after receiving consecutive reordered packets, and Vertigo

[6] deploys an ordering component below the transport layer at receiver hosts to restore the correct ordering of the packets

before passing them to higher-layer protocols. Our focus in this paper is on implementing deflection in switches.
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Fig. 1. (a/b) Simple and Selective Deflection deliver low completion times for a bursty incast application under
low load. (c/d) Selective Deflection retains its effectiveness under load. Both categories require hardware
primitives that are not available in today’s programmable datacenter switches.

In the first group, to reduce the spreading of congestion and packet loss, DIBS, a recent Simple

Deflection technique, deflects packets destined for a congested port to a randomly selected port

with sufficient buffer capacity. This requires filtering out the congested ports before selecting a port

to deflect a packet. To show the impact of port filtering, we simulate a 2-tier leaf-spine datacenter

network with 4 core switches, 8 leaf switches, and 40 servers connected to each leaf switch. We

set the switch buffer capacity to 300 KB per port and use 10 Gbps and 40 Gbps links to connect

leaf switches to servers and spine switches, respectively. We generate 25% background load, using

the flow sizes and inter-arrival times of Facebook’s cache workload [64], and 10% incast load by

initiating 4000 incast queries per second. In every incast query, a client sends 100 requests to

randomly selected servers asking each for 40 KB of data. We observe that DIBS reduces the average

and 99
𝑡ℎ

percentile query completion time (QCT), i.e., the time from initiating an incast query to

receiving all the responses, by 3× and 2×, respectively, compared to a naive deflection scheme that

does not filter out congested ports.

However, deflected packets still traverse longer paths and cause bandwidth overhead and head-

of-the-line blocking which becomes problematic under load [6]. To evaluate this, we generate 25%

background plus 10% and 70% incast loads by changing the arrival rate of incast events under 10/40

Gbps links (Figures 1a and 1c) and 100 Gbps links (Figures 1b and 1d). While effective under 35%

load, Simple Deflection breaks as the load increases to 95%. In particular, with 10/40 Gbps links

under 95% load, DIBS increases the 99
𝑡ℎ

percentile of flow completion times of the incast flows and

the mean QCT by 43% and 51%, respectively, compared to not deflecting packets.

In the second group, to remain effective under load, Selective Deflection tries to control the

bandwidth overhead of deflection by differentiating between short and long-lasting congestion and

treating them differently. For instance, Vertigo [6], a recent Selective Deflection technique, deflects

and, in cases of extreme congestion, drops the packets of the flows that contribute to long-lasting

congestion with higher probability. This limits the extra bandwidth overhead imposed by deflected

packets and helps keep the packets of short flows on shorter (and faster) paths. Figure 1 shows

that Selective Deflection manages to keep the latency low under load, e.g., with 100 Gbps links,

Selective Deflection achieves 6× lower mean and tail QCT than the case with no packet deflection.

(c) Existing deflection techniques cannot be implemented in modern datacenter net-
works. Both Selective and Simple Deflection require primitives that are not easily implementable

in today’s programmable switch hardware. To effectively defuse burts under load, when a packet

arrives and the destination queue is full, Selective Deflection extracts the packet with the largest

number of remaining bytes in its corresponding flow from the queue and deflects it [6]. Unfor-

tunately, arbitrary packet extraction is not implementable in programmable switches as they are

restricted to strict priority FIFO queues [8, 60, 68, 80]. Simple Deflection, on the other hand, deflects

packets to ports with enough buffer capacity [82], which requires generating a list of candidate

ports for every incoming packet. Generating such a list is hard given the rapid changes in ports’
queue occupancy. In the next two sections, we address these challenges by designing practical and

high-performance deflection techniques and implementing them in Intel Tofino switches.
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3 PREEMPTIVE DEFLECTION: A PRACTICAL SELECTIVE DEFLECTION TECHNIQUE
We propose Preemptive Deflection as an approximation of Selective Deflection. The intuition behind

Preemptive Deflection is to identify the packets likely to be deflected in the future and preemptively

deflect them before they enter the destination queue. We design an algorithm that computes the

relative priority of an incoming packet, i.e., its priority compared to the packets already enqueued

in the destination queue, to decide if the newly arrived packet should be enqueued or deflected.

Illustrative example. Figure 2 shows the idea behind Preemptive Deflection compared to other

deflection-based techniques and a no-deflection baseline. In this example, the queue capacity is

equal to four packets and the numbers on packets represent their priority (lower numbers indicate

higher priority). When we have no deflection (a), the packets are enqueued in the order that

they arrive and the last two packets, i.e., packets 3 and 2, are dropped. With Naive Deflection (b),
i.e., deflecting the incoming packet when the destination queue is full, the first four packets are

enqueued and the last two are deflected. This imposes an additional latency to high-priority packets

due to traversing longer paths in the network. Under Selective Deflection (c), the first four packets
are enqueued as they arrive. When the last two packets arrive, two low-priority packets, i.e., packets
5 and 4, are extracted from the queue to make room for packets with higher priorities. While this is

highly effective in keeping high-priority packets on shorter paths, packet extraction from arbitrary

locations in the queue is not implementable in programmable hardware. To resolve this challenge,

the switch should predict which packets may be deflected in the future and preemptively deflect

them. In the above example, preemptively deflecting every packet with a priority larger than 3 (d)
will lead to a similar outcome as Selective Deflection.

High-level design. Our proposal makes deflection decisions before admitting the packet into

the switch buffer. To this end, when a packet arrives, the Relative Priority Calculation module

(§3.1) first calculates its priority relative to the packets inside the destination queue and feeds the

relative priority alongside the destination queue occupancy to the Preemptive Deflection Algorithm

(§3.2) to determine if the packet should be enqueued or deflected. Selectively deflecting packets

based on the remaining bytes of their flows results in low latency under various degrees of load [6].

Accordingly, for our design, we assume that packets are marked with the remaining bytes of their

flows. In this scheme, packets that belong to flows with smaller remaining bytes have a higher

priority and therefore, are more likely to stay on shorter forwarding paths.
4
Augmenting packets

with flow size information can be achieved by deploying a marking layer at the sender hosts [6].

3.1 Relative Priority Calculation
The relative priority of an incoming packet represents its precedence over the packets inside the

destination queue. We develop two methods for estimating the relative priority to balance the

accuracy of the estimation vs. processing resource consumption trade-off.

4
Our design also works with other marking paradigms such as the Least Attained Service (LAS) scheme [14] in which

packets are tagged with the number of bytes that have been sent from their flows. Appendix A shows that, with LAS,

Preemptive Deflection achieves 73% lower 99
𝑡ℎ

percentile QCT than Simple Deflection under 95% load. Furthermore, our

testbed experiments in §5 demonstrate that our technique also works with simpler schemes such as per-flow prioritization.
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1) Quantile estimation. Measuring a packet’s quantile, i.e., the number of packets in the

destination queue with higher priorities than the newly arrived packet divided by the total number

of packets inside the queue, can accurately compute its relative priority [80]. However, quantile

calculation is a resource-intensive operation [80] as it requires comparing the priority of the

new packet to all the packets inside the destination queue. For instance, in PISA architecture, 8

processing stages are required to calculate the quantile relative to 20 packets. Inspired by [80], to

limit the resources required for quantile-based relative priority calculation and avoid compromising

implementability, we approximate a packet’s quantile by comparing its priority to a portion of

recently enqueued packets instead of all the packets inside the destination queue. Additionally,

we develop a statistical method that reduces the memory footprint and the processing resources

required for relative priority estimations, as we next explain.

2) Statistical distribution mapping. We develop a lightweight method that estimates the

relative priority of the packet using a statistical model of the workload. Our objective here is to

mathematically model the distribution of packet priorities and use that model to estimate the

relative priority of an incoming packet. Using historical data of packet priorities in each queue

and distribution fitting, the operator identifies the class of distribution (e.g., normal, exponential,

etc.) that best fits the priorities of enqueued packets for each port.
5
This distribution class is then

loaded in each switch for each port. At the deflection time, the switch generates the distribution of

currently enqueued packets in the output port using the distribution class and certain statistical

properties of the enqueued packets (e.g., the average priority of the packets). The relative priority

of the incoming packet is then estimated using this distribution. We find experimentally that under

Selective Deflection and with current datacenter workloads, the exponential distribution better

fits the priority distribution compared to some alternatives such as uniform, normal, and Pareto

distributions (Appendix B). As such, in the rest of the paper, we use the exponential distribution:

when a packet arrives, the switch calculates the average remaining bytes (𝑀) of the packets in

the destination queue and uses the CDF of the exponential distribution, i.e., 1 − 𝑒−
𝑥
𝑀 (𝑥 being the

remaining bytes of the flow corresponding to the incoming packet), to calculate the relative priority.

All that remains is choosing among the two methods which becomes a question of resource

availability. As we show in §5, both methods outperform the existing techniques, and the quantile

method is more resilient than the statistical counterpart under extreme load. The statistical approach,

on the other hand, requires 4× fewer processing stages to be implemented in Tofino switches (§4),

making it a better fit for networks with limited resources and a lower degree of transient congestion.

In Appendix C, we further investigate the trade-off between the accuracy and resource consumption

of these methods.

3.2 Preemptive Deflection Algorithm
Using the relative priority, calculated in the previous section, the Preemptive Deflection algorithm

sets a threshold (𝜏) on the destination queue occupancy and deflects an incoming packet if the

queue occupancy is more than the threshold. Equation 1 illustrates the relation used for calculating

the 𝜏 based on the relative priority (𝑅𝑝𝑘𝑡 ) and the destination queue capacity (𝑄):

𝜏 = 𝑄 × [1 − 𝛼 × 𝑅𝑝𝑘𝑡 ] (1)

The user-defined parameter, 𝛼 , indicates the aggressiveness of the Preemptive Deflection algo-

rithm in deflecting packets. Larger 𝛼 values result in a tighter threshold on queue occupancy and

thus, a higher chance of preemptively deflecting packets. In §5, we evaluate the effect of various

𝛼 values on the performance of Preemptive Deflection. After deciding to deflect a packet, the

same algorithm is applied to the deflection port’s queue occupancy and the relative priority of the

5
Recording packet priorities and mapping various distributions to them can be done offline.
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Fig. 4. Implementing Simple and Preemptive Deflection in the PISA switch architecture.

deflected packet inside the deflection port’s queue to decide if the packet should be dropped or

forwarded to the deflection port.

Workflow. Figure 3 presents the workflow for preemptive packet deflection. When a packet

arrives, we calculate its relative priority compared to the packets inside the destination queue 1
and feed the relative priority and the destination queue occupancy information into the Preemptive

Deflection algorithm 2 . Using this information, the algorithm decides whether the packet should

be enqueued 3 or deflected 4 . Deflecting low-priority packets leaves headroom for absorbing

bursts of high-priority packets. If the destination queue is full, we deflect the packet irrespective of

its priority. To deflect a packet, we determine its relative priority compared to the packets inside

the deflection port’s queue 5 and apply a Preemptive Drop algorithm 6 that uses the deflection

port’s queue occupancy and the packet’s relative priority to decide if the packet should be enqueued

7 or dropped 8 . Preemptively dropping the low-priority packets suppresses large flows, by

signaling the congestion to the endpoints, and averts network over-utilization.

We discussed howwe use Preemptive Deflection to address the practicality challenges of Selective

Deflection. The challenges associated with implementing Simple and Preemptive Deflection in

programmable hardware and our proposed solutions are described next.

4 HARDWARE IMPLEMENTATION
We implement Simple Deflection, quantile-based Preemptive Deflection, and distribution-based

Preemptive Deflection in an Intel Tofino switch using 707, 1011, and 875 lines of P4 code, respectively.

This section describes the challenges of implementing these techniques and how we address them.

4.1 Implementing Simple Deflection
To minimize packet loss, Simple Deflection reroutes the packets toward randomly selected switches

to which there are ports with enough buffer capacity [82]. Filtering out congested ports before

deflection improves the average latency of Simple Deflection by 3× under 55% load. Accordingly,

implementing Simple Deflection requires distinguishing between congested and non-congested

ports toward the neighboring switches and selecting a non-congested port uniformly at random.
6

Figure 4a provides an illustrative presentation of how we implement these operations.

Identifying ports with enough buffer capacity. To differentiate between congested and non-

congested ports, we require queue occupancy information at the ingress pipeline which decides

whether or not to deflect a packet. Alas, not all switch architectures provide queue occupancy

information at the ingress pipeline [80]. To address this, we define two register arrays (one in

the ingress pipeline and one in the egress pipeline) representing two bitmaps with sizes equal to

the number of ports. The ones and zeros in the bitmaps represent congested and non-congested

ports, respectively. We use control packets that recirculate inside the switch and transfer the queue

6
Existing work on Simple Deflection chooses a random, non-congested port for deflecting packets [82]. While deflecting

packets to the least congested port toward neighboring switches might provide better load distribution, implementing it in

Tofino imposes further resource consumption constraints.

Proc. ACM Netw., Vol. 1, No. 3, Article 25. Publication date: December 2023.



25:8 Abdous, et al.

occupancy bitmap from the egress to the ingress pipeline A . The bitmap at the egress pipeline

is updated any time a data packet is forwarded to a port. When a data packet enters the egress

pipeline, it updates the bit that corresponds to the destination port B . Note that the control packets
are not required for the architectures that provide queue occupancy information at the ingress

pipeline, such as Tofino 2 [5, 80].

Choosing a random non-congested port, with sufficient buffer capacity, for packet
deflection. At the ingress pipeline, we forward a packet if the destination port’s corresponding bit

is 0 C . Otherwise, to deflect it D , we generate a random number, 𝑟 , between 0 and the number of

neighboring switches and deflect the packet to the first non-congested port toward a switch whose

corresponding bit is located after the 𝑟 ’th bit of the bitmap. In Appendix E, we prove that this

technique approximately results in uniform random selection between non-congested ports toward

the neighboring switches.

4.2 Implementing Preemptive Deflection
Realizing Preemptive Deflection (PD) requires implementing quantile-based and distribution-based

relative priority calculation and the deflection algorithm. Figure 4b depicts the implementation of

these methods in the PISA architecture.

Quantile estimation. The quantile-based PD a uses the quantile of the newly arrived packet

as its relative priority. Considering the buffer capacity of commodity switches, it is not feasible

to calculate a packet’s quantile relative to all the packets in a queue. However, it is possible to

estimate the quantile of a packet by comparing it to a portion of the packets inside the queue using

a circular window and packet sampling [80]. To this end, as packets arrive, we store samples of their

priorities, i.e., the remaining bytes of their corresponding flows, and calculate a packet’s priority

relative to the ones stored in the circular window b . To update the circular window, we keep an

index (𝑖𝑑𝑥 ) pointing to the oldest element in the window and overwrite the element to which the

index points, with the priority of the newly enqueued packet, moving the index forward by 1.

Exponential distribution mapping. To estimate the relative priority using an exponential

distribution c , when a packet arrives, we decide if the packet should be enqueued or deflected

using the average priority of the packets inside the destination port’s buffer. We then update the

average priority corresponding to the forwarding or deflection port if the packet was enqueued or

deflected, respectively, based on the priority of the incoming packet. Reading the average priority

of the previously enqueued packets to make Preemptive Deflection decisions and storing it after it

is updated requires accessing a memory block in two different stages, which is not supported by

Tofino switches [17, 34, 81].

To overcome this challenge, we use two register arrays, one at the ingress and one at the egress

pipeline d , storing a moving average of the priority of the packets enqueued in every port’s buffer.

To update the register arrays, data packets read an element from the ingress pipeline’s register array

based on the port to which they are being forwarded, update the moving average using the priority

assigned to them by end hosts, and carry the newly calculated average to the egress pipeline. We

use pre-filled match-action tables to implement the moving average function on packet priorities.

In particular, we look up the table using the current moving average value and the priority of the

newly arrived packet and retrieve the updated average from the table. This is because existing

PISA switches like Tofino do not offer primitives for multiplication, division, and floating point

operations [67]. In the egress pipeline, we update the register array using the new average priority

carried by the data packets. To keep the register arrays synchronized, we use control packets to
recirculate the most recent average priority information from the egress to the ingress pipeline e .

As the data packets enter the ingress pipeline, the average priority (𝑀) is retrieved from the

register array to calculate the relative priority, i.e., 𝑅𝑝𝑘𝑡 = 1 − 𝑒−
𝑥
𝑀 where 𝑥 is the priority of the
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incoming packet. Although the PISA architecture does not support all the operations required for

calculating the CDF of an exponential distribution, these operations can be approximated using

lookup match-action tables [67] f . Accordingly, similar to our technique for updating the average

priority, we use pre-filled match-action tables to calculate the relative priority of incoming packets.

Using exponential distribution to estimate the relative priority requires two processing stages at

the ingress pipeline which is 4× lower compared to quantile estimation.

Preemptive Deflection algorithm. In addition to the relative priority of the incoming packet,

the Preemptive Deflection algorithm requires the queue occupancy information g . Similar to

Simple Deflection, we use control packets to synchronize the queue occupancy information be-

tween switch pipelines.
7
Note that both queue occupancy information and the average priority

corresponding to a port can be transmitted using a single control packet. We deflect a packet if

the destination queue occupancy is over a threshold (Equation 1) h . The threshold values are

pre-calculated and inserted into the match-action tables to avoid resource exhaustion.

Overall, out of the 12 processing stages available in a Tofino 1 switch, our implementations

of Simple Deflection, quantile-based Preemptive Deflection, and distribution-based Preemptive

Deflection require 8, 11, and 2 processing stages, respectively.

5 PERFORMANCE EVALUATION
We evaluate our approximations of Simple and Selective Deflection on a testbedwith two Intel Tofino

switches and 4 servers and using Omnet++ network simulations.
8
In this section, we use the terms

Preemptive Deflection and Simple Deflection, to refer to the quantile-based Preemptive Deflection

and our approximation of Simple Deflection, respectively, and explicitly mention whenever we are

referring to distribution-based Preemptive Deflection. Our results show that the implementable

deflection schemes proposed in this paper closely approximate Simple and Selective Deflection and

outperform the existing deployed systems. Our key findings are summarized below:

• In the physical testbed, Simple Deflection, quantile-based PreemptiveDeflection, and distribution-

based Preemptive Deflection result in 8×, 425×, and 437× lower 99
𝑡ℎ

percentile response

times, respectively, compared to a drop-tail queue baseline.

• In large-scale simulations with different categories of congestion control, (a) a drop-base

congestion control algorithm, TCP Reno, (b) an ECN-based congestion control, DCTCP [10],

(c) a delay-based congestion control, Swift [54], and (d) a technique based on sub-RTT explicit

notifications, Bolt [13], our algorithms closely approximate Selective and Simple Deflection

techniques while being implementable in programmable switches.

• In all the experiments above, our algorithms outperform the techniques that can be imple-

mented in datacenters today such as ECMP and AIFO [80], e.g., in conjunction with Swift,

our implementation of Simple Deflection improves the 99
𝑡ℎ

percentile query completion

time (QCT) by 36% and 16× compared to ECMP and AIFO, respectively, under 55% load, and

Preemptive Deflection improves the 99
𝑡ℎ

percentile QCT by 2.5× and 15× compared to ECMP

and AIFO under 95% load.

5.1 Tetbed Evaluations
To evaluate our prototype implementations, we run a mixed workload on four server machines

connected to two Intel Tofino switches that run Simple and Preemptive Deflection data planes.

The server machines feature 40 Gbps Intel XL710 NICs, Intel Xeon E5-2620 v4 CPUs, and 64 GB of

7
In §6, we demonstrate that the overhead of recirculating control packets is low even with a high number of active ports.

8
The artifacts for the large-scale simulations and hardware implementation are publicly available at https://github.com/

hopnets/practical_deflection.git.
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Fig. 5. Preemptive Deflection improves the performance of high-priority flows in our physical testbed.

memory. Figure 5a illustrates the topology for our testbed. In our experiments, two servers generate

low-priority background flows and one generates high-priority traffic using a combination of Iperf
and key-value workloads. We evaluate four different cases: 1) No deflection, 2) Simple Deflection,

3) quantile-based Preemptive Deflection (Quantile-PD), and 4) distribution-based Preemptive De-

flection (Distribution-PD). In order to emulate packet drops at a small-scale granularity, we set the

per-port switch buffer capacity to 80 KB. All results are averaged over 5 runs.

Preemptive Deflection minimizes the impact of low-priority flows on the response
time of high-priority Memcached flows. As our first set of experiments on the physical testbed,

we generate a background workload consisting of two Iperf instances creating an incast on the

link connecting to one of the servers, totaling up to 35 Gbps. Next, we run parallel high-priority

Memcached connections that compete with the background traffic by offering 500K Requests-

per-second aggregate cache traffic load. We measure the response times for high-priority cache

workload. We also evaluate the case of having Memcached traffic without background flows and the

case of having a switch with 12 MB of buffer capacity. Figure 5b demonstrates that PD outperforms

Simple Deflection and achieves a latency close to the case of having cache trafficwithout background

flows. In particular, PD reduces the 99
𝑡ℎ

percentile response time by 425×, 51×, and 199× compared

to the drop-tail queue, Simple Deflection, and the switch with 12 MB buffer capacity, respectively,

while adding only 0.59% extra latency compared to only having Memcached traffic.

Preemptive Deflection favors high-priority UDP flows. In the next experiment, two of the

servers in our testbed generate background load using large low-priority UDP flows and the third

server sends bursts of high-priority UDP flows. We generate 5 bursts, each consisting of 10000

high-priority packets, in a 5-second period. Figure 5c illustrates the percentage of high-priority

packets successfully received by the receiver (goodput) under 50% and 90% background loads. We

observe that Simple Deflection performs similarly to the case of having a large buffer capacity and

delivers 5% more high-priority packets than the baseline droptail queue under 50% load. However,

as we increase the load to 90%, Simple Deflection fails to provide any improvement over the baseline.

PD, on the other hand, outperforms other techniques and delivers 100% of the high-priority packets

under both 50% and 90% load. In particular, both Quantile-PD and Distribution-PD deliver 23%,

24%, and 35% more packets compared to the droptail queue, Simple Deflection, and the switch with

12 MB buffer capacity, respectively.

5.2 Large-scale Simulation Setup
Topology. We simulate a 2-tier leaf-spine topology consisting of 4 spine switches, 8 leaf switches,

and 40 machines connected to each leaf. The links connecting the spine switches to the leaf switches

and the leaf switches to the servers have 40 Gbps and 10 Gbps bandwidth, respectively [6]. The

switches have a 300 KB queue capacity per port [6, 15, 82]. We also run the experiments under two

other topology settings: 1) an 8-ary fattree and 2) a leaf-spine topology with 100 Gbps bandwidth

links [53, 72, 73, 79].
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Workload. We evaluate Simple and Preemptive Deflection under a combination of background

load and incast traffic patterns. For the background load, we set the flow sizes and inter-arrival

times based on two publicly available datacenter traffic traces, Facebook’s cache follower and

Google’s web search [10, 64], and scale the flow inter-arrival times to generate different degrees of

background load. To simulate incast traffic pattern, a randomly selected client sends requests to

multiple randomly chosen servers. This would cause the servers to simultaneously send replies to

the client and create an incast event. We generate different degrees of burstiness by varying three

factors: 1) The number of incast queries per second (QPS), 2) The scale of an incast event, i.e., the
number of flows sent per event, and 3) The size of each flow. Unless stated otherwise, we generate

50% background load and 100 flows of size 40 KB per incast query for our evaluations. We alter the

incast event arrival rate between 2000 and 70000 QPS depending on the network bandwidth and

the intended load [6, 55, 82].

Other approaches. In this section, we evaluate Simple Deflection, quantile-based Preemptive

Deflection (Quantile-PD), and distribution-based Preemptive Deflection (Distribution-PD). We com-

pare the performance of these techniques with ECMP, a commonly used load-balancing technique

in datacenters, AIFO [80], an early drop scheme that drops packets based on their position in their

corresponding flow to approximate Shortest Remaining Processing Time (SRPT) scheduling, and

two state-of-the-art representatives of Simple and Selective Deflection: DIBS [82], a technique that

deflects packets to randomly selected neighboring switches, and Vertigo [6], a Selective Deflection

scheme that marks every packet with the remaining bytes of its corresponding flow and uses this

information to deflect the packets of large flows with higher probability.

Addressing packet re-ordering. To recover from the redundant packet reordering resulting

from Selective Deflection, Vertigo uses packet priorities, i.e., remaining bytes of their corresponding

flows, to restore the correct order of the packets at the destination host. Since Preemptive Deflection

also marks packets with the remaining bytes of their flows, we use a similar ordering layer to

absorb the reordering. For Simple Deflection, similar to DIBS, we turn off the fast retransmission in

TCP to avoid throughput reduction caused by reordering.

Evaluation metrics. For our evaluations, we measure the mean and 99
𝑡ℎ

percentile Flow

Completion Times (FCT) and Query Completion Times (QCT), i.e., the time taken from initiating

the incast event to receiving all the responses. Additionally, we collect and report the application-

level throughput (goodput), the average Round-Trip Time (RTT), the number of packet drops, and

the percentage of reordering, i.e., the number of out-of-order packets divided by the total number

of packets.

Parameter settings. Preemptive Deflection uses three parameters: 1) 𝛼 : the deflection aggres-

siveness, 2) window size: the number of previously enqueued packets considered for quantile-based

relative priority calculation, and 3) sampling rate: the rate at which we store packet priorities for

quantile calculation. Considering the hardware resource availability and our findings in §5.4, we

set the default values of 𝛼 , window size, and sampling rate to 0.1, 20 packets, and one sample per 20

packets, respectively. Unless stated otherwise, we set TCP’s initial window size to 10 packets [6, 82],

DCTCP’s threshold to 65 packets [10], and the minimum and initial RTO to 10𝑚𝑠 [6, 82]. We tune

the parameters of Swift and Bolt according to [54] and [13], respectively. The other parameters of

our simulations are set to their default value in the INET framework [1].

5.3 Large-scale simulation results
We evaluate Simple and Preemptive Deflection in conjunction with distinct congestion control

protocols and under different combinations of background load and incast traffic patterns.

Preemptive Deflection closely follows the performance of Selective Deflection with
delay-based and sub-RTT congestion control protocols. In the first experiment, we deploy
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Fig. 6. Preemptive Deflection outperforms ECMP and Simple Deflection under load and achieves comparable
latency to Vertigo with transport protocols that provide a fast reaction to congestion.

ECMP, DIBS, Vertigo, Simple Deflection, and Preemptive Deflection (PD) on top of TCP Reno and

DCTCP [10], representatives of window-based transport protocols, Swift [54], a representative of

delay-based protocols, and Bolt [13], a state-of-the-art protocol that supports congestion notification

at sub-RTT granularity. We gradually increase the load by elevating the incast event arrival rate.

Figure 6 illustrates that Simple Deflection successfully defuses bursts when the degree of the load

is low. In particular, under 55% load, both Simple Deflection and DIBS achieve 51% and 71% lower

mean QCT than ECMP under TCP and DCTCP, respectively. However, they break quickly under

load. For instance, with DCTCP, Simple Deflection increases the average FCT and QCT by 57% and

2×, respectively, compared to ECMP under 95% load. The performance degrades at a much slower

rate when Simple Deflection is used with Swift and Bolt due to their faster reaction to network

congestion compared to TCP and DCTCP.

Unlike Simple Deflection, Selective Deflection preserves the low latency under load, irrespective

of congestion control protocol, by deflecting the packets with the highest number of remaining bytes

in their corresponding flows. However, the performance superiority of Selective Deflection comes at

the cost of compromising its implementability. Figures 6a and 6b demonstrate that, while working

with TCP or DCTCP, Preemptive Deflection achieves the middle ground between Selective and

Simple Deflection. In particular, in conjunction with DCTCP, PD achieves 31% and 69% lower mean

QCT and 24% and 69% lower 99
𝑡ℎ

percentile QCT than ECMP and Simple Deflection, respectively,

under 95% load. While being effective under load, Preemptive Deflection is still prone to packet loss

under extreme congestion due to its early deflection and drop paradigm and might occasionally

deflect a packet that could have been enqueued considering the subsequent packets, resulting in

higher latency than Selective Deflection. Concretely, under 95% load, PD+DCTCP incurs an extra

5% packet loss and 2.35× higher average query completion time than Vertigo+DCTCP. Accordingly,

deploying Preemptive Deflection alongside congestion control schemes with fast reactions to

congestion, such as Swift, significantly improves its effectiveness by reducing the number of packet

drops. For instance, under 95% load, PD+Swift reduces the number of packet drops by 52× compared

to PD+DCTCP which results in a 3.5× improvement in PD’s mean QCT. We observe similar results

for PD+Bolt. Particularly, PD+Bolt reduces the number of packet drops and the average QCT by

153× and 6×, respectively, compared to PD+DCTCP under 95% load. As a result of the reduction

in the number of packet drops, Preemptive Deflection achieves a latency as low as Vertigo in

conjunction with Swift and Bolt. Additionally, under 95% load, PD+Swift and PD+Bolt achieve 52%

and 35% lower 99
𝑡ℎ

percentile FCT than ECMP+Swift and ECMP+Bolt, respectively, showing that

packet deflection benefits Swift and Bolt by absorbing local bursts.

Distribution-PD achieves comparable performance to Quantile-PD under RTT and sub-RTT-based

congestion control protocols. While implementing the distribution-based Preemptive Deflection
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Fig. 8. Preemptive Deflection im-
poses lower degrees of reordering
compared to Selective Deflection.

requires fewer resources than the quantile-based Preemptive Deflection (§4), the quantile-based

paradigm has higher accuracy than the distribution-based scheme in calculating a packet’s relative

priority (Appendix C). Accordingly, Distribution-PD experiences higher query completion times

than Quantile-PD under load. However, Figures 6c and 6d show that while deployed with Swift

and Bolt, Distribution-PD is as effective as Quantile-PD under load. This is because Swift and Bolt

react faster to congestion and cause fewer packet drops compared to TCP or DCTCP.

Simple Deflection performs similar to DIBS. Figure 6 also demonstrates that Simple Deflec-

tion effectively defuses bursts under light loads and closely follows the performance pattern of

DIBS. In particular, with DCTCP and under 55% load, both Simple Deflection and DIBS outperform

ECMP and Vertigo by achieving 3.5× and 5.25% lower mean QCT and 2.4× and 3.54% lower 99
𝑡ℎ

percentile QCT, respectively.

Preemptive Deflection achieves higher goodput than Vertigo. By constantly extracting the

packets of large flows from queues and deflecting them, Selective Deflection throttles their send

rates, leading to diminished goodput, i.e., application-level throughput. Conversely, Preemptive

Deflection adopts an alternative approach by refraining from packet extraction once they are

enqueued. This strategy sporadically benefits large flows, thus, enhancing the goodput compared

to Selective Deflection. To show this, we compare the goodput of elephant flows, i.e., flows larger
than 10 MB [6], under various deflection-based paradigms with DCTCP and Swift as the congestion

control protocol. Figure 7 shows that PD consistently achieves superior goodput for elephant flows

in comparison to Vertigo. For instance, with DCTCP under 95% load, PD improves the goodput

of elephant flows by 20% compared to Vertigo. Additionally, we observe that Simple Deflection’s

goodput closely parallels that of DIBS.

Preemptive Deflection imposes lower degrees of reordering compared to Selective
Deflection.We also compare the degree of reordering imposed by different techniques. To this end,

we measure the reordering percentage, i.e., number of out-of-order packets received by receiver

hosts divided by the total number of packets, under various degrees of load. Figure 8 presents

the results. We observe that applying deflection increases the degree of reordering. However,

the adverse effects of this heightened reordering on performance can be mitigated by deploying

an ordering component, responsible for restoring the correct packet order, at the receiver hosts

[6, 35, 37, 40]. For instance, with DCTCP under 95% load, Vertigo and PDmanage to achieve 70% and

31% lower average QCT than ECMP despite causing 3.3× and 2.4× more reordering, respectively.

Since Preemptive Deflection uses FIFO queues instead of Shortest Remaining Processing Time

(SRPT) scheduled queues, it imposes lower degrees of reordering compared to Selective Deflection.

Preemptive Deflection is resilient to the scale and the flow size of incast events. Next,
we gradually increase the load from 50% to 95% by increasing the scale of incast events, i.e., the
number of requests sent per incast query. To this end, we set the incast event arrival rate to 4000

QPS and the size of each flow in the event to 40 KB and change the scale from 50 to 450 requests per

query. We use DCTCP as the congestion control protocol. Figure 9a illustrates that while Simple

Deflection breaks as the scale goes over 150 requests per query, Preemptive Deflection remains
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Fig. 9. Preemptive Deflection remains resilient to incast scale and
works best when incast flow sizes are shorter than 100 KB.
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Fig. 10. PD achieves lower QCTs
than ECMP, Simple Deflection, and
AIFO in a fat-tree topology.

resilient and performs closely to Selective Deflection (e.g., PD outperforms ECMP and DIBS by

achieving 2× and 4× lower 99
𝑡ℎ

percentile FCT, respectively, under 450 requests per incast query).

Due to its higher accuracy for calculating relative priority, Quantile-PD finishes the incast queries

34% faster than Distribution-PD when the scale of incast queries is 450.

To evaluate the resiliency of distinct techniques against the incast flow size, we generate 4000

queries per second, set the scale to 100 flows per query, and change the size of each flow from 1 KB

to 180 KB. Figure 9b presents the results. When the size of incast flows is under 100 KB, Preemptive

Deflection outperforms ECMP and Simple Deflection. In particular, with 100 KB incast flows, PD

results in 28% and 24% lower 99
𝑡ℎ

percentile QCT than ECMP and DIBS, respectively. As the size of

incast flows goes over 100 KB, PD results in higher latency than ECMP. This is due to prioritizing

packets of background flows over incast flows as more than 50% of the background flows in our

experiments are smaller than 100 KB [64]. We believe the higher latency of Preemptive Deflection

at very large flows would not be an issue since previous studies of data center traffic argue that

around 70% of the flows in large datacenters are smaller than 100 KB [11, 13, 64].

Deflection-based techniques defuse bursts more effectively in a three-tiered topology.
We further evaluate different deflection-based paradigms by simulating an 8-ary fat-tree topology

[7] with 32 edge switches, 32 aggregate switches, 16 core switches, and 128 servers. The bandwidth

of all the connection links is set to 10 Gbps [6, 82]. For this set of experiments, we simulate ECMP,

AIFO, DIBS, Vertigo, Simple Deflection, and PD on top of DCTCP. Figure 10 illustrates that AIFO’s

early drop mechanism is inefficient when faced with bursts of high-priority packets. Particularly,

AIFO completes queries 3×, 10×, and 10× slower than ECMP, Simple Deflection, and PD under 55%

load. We also observe that, unlike our experiments with 2-tier leaf-spine topology, ECMP does not

outperform Simple Deflection under load. In particular, DIBS and Simple Deflection complete 4%

more queries and achieve 2× lower 99
𝑡ℎ

percentile QCT than ECMP under 95% load. This is due

to the extra 33% buffer capacity and 20% more choices available for packet deflection in fat-tree

topology compared to a 2-tier leaf-spine topology with 4 spines and 8 leaf switches. However, Simple

Deflection shows a more drastic degradation of performance than ECMP as the load increases.

Using the extra resources, while also taking the remaining bytes of the flows into consideration,

Preemptive Deflection outperforms Simple Deflection and achieves 33% and 42% lower mean and

99
𝑡ℎ

percentile QCTs under 95% load, respectively.

Preemptive Deflection effectively defuses bursts in networks with higher bandwidth.
Next, we simulate a 2-tier leaf-spine topologywith 100 Gbps links [53, 72].We change the arrival rate

of incast queries to generate different degrees of burstiness. Figure 11 illustrates the performance of

different techniques in conjunction with DCTCP and Swift under low and high degrees of burstiness.

We observe that similar to the network with lower link capacities, Simple Deflection effectively
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Fig. 11. As we increase the link rate to 100 Gbps, Simple and Preemptive Deflection effectively defuse bursts
under low and high degrees of burstiness, respectively.

1 5 10 20 50 100 150 200
Window size (# packets)

0.5

1.0

1.5

QC
T 

(s
)

55% Load (Mean) 55% Load (p99) 75% Load (Mean) 75% Load (p99) 95% Load (Mean) 95% Load (p99)

0 0.1 0.2 0.3 0.5 0.7 0.9 1
α

0.001

0.010

0.100

1.000

QC
T 

(s
)

(a) 𝛼 for Quantile-PD

0 0.1 0.2 0.3 0.5 0.7 0.9 1
α

0.001

0.010

0.100

1.000

QC
T 

(s
)

(b) 𝛼 for Distribution-PD

1 5 10 20 50 100 150 200
Window size (# of packets)

0.001

0.010

0.100

1.000

QC
T 

(s
)

(c) Window size

1 5 10 20 50 100 150 200 500
Smapling rate (one sample per # of packets)

0.001

0.010

0.100

1.000

QC
T 

(s
)

(d) Sampling rate
Fig. 12. Measuring the performance of Preemptive Deflection under various parameter settings.

defuses low degrees of bursts and performs similarly to DIBS. Also, Preemptive Deflection effectively

absorbs bursts and outperforms ECMP and Simple Deflection under load. Particularly, with Swift,

PD achieves 6×, 18×, and 7× lower mean QCT than ECMP, AIFO, and Simple Deflection under

85% load, respectively. By providing a faster reaction to congestion, Swift improves the Preemptive

Deflection’s effectiveness in absorbing bursts under load. In Appendix F, we evaluate Simple and

Preemptive Deflection under other combinations of background load and incast traffic patterns with

both 10/40 Gbps and 100 Gbps links. Our findings are in alignment with our earlier observations.

5.4 Calibrating the parameters for Preemptive Deflection
Adjusting the aggressiveness of Preemptive Deflection. The Preemptive Deflection algorithm

sets a dynamic threshold on the destination queue occupancy using the destination queue capacity,

the relative priority of the incoming packet, and a user-defined parameter, i.e., 𝛼 , that indicates
the aggressiveness in deflecting and dropping packets. Larger 𝛼 values indicate a more aggressive

packet deflection and drop paradigm. For Preemptive Deflection, there is a trade-off between

choosing small and large values for 𝛼 . Aggressively deflecting and dropping packets increases

the chance of dropping the first few packets of small flows, i.e., packets with the largest number

of remaining bytes in a small flow, under the incast traffic pattern while small values of 𝛼 might

result in late reaction to congestion and reduce the effectiveness of Preemptive Deflection. To

investigate the impact of 𝛼 on PD’s performance, we simulate quantile-based and distribution-based

Preemptive Deflection with various 𝛼 values in a two-tier leaf-spine topology under 55%, 75%, and

95% load. Figures 12a and 12b illustrate that, under 55% and 75% load, using small non-zero 𝛼 values

(∼ 0.1) is preferable. For instance, under 55% load, setting 𝛼 to 0.1 improves the average QCT of

Quantile-PD by 19% and 71% compared to setting it to 0 and 1, respectively. This is due to the fact

that setting 𝛼 to zero eliminates relative priority calculation in the Preemptive Deflection algorithm

and thus hampers the performance while setting it to a large value increases its sensitivity, thus

increasing the chance of deflecting high-priority packets that contribute to transient bursts. Under

extreme loads, on the other hand, Preemptive Deflection should be more sensitive to congestion,

therefore, we need higher values of 𝛼 (∼ 0.5). In particular, under 95% load, setting 𝛼 to 0.5 results in

50% and 40% better 99
𝑡ℎ

percentile QCT for Quantile-PD than setting it to 0.1 and 0.9, respectively.

Datacenter operators can adjust 𝛼 values based on the average load level in the network clusters.

Tuning the window size and sampling rate. To calculate a packet’s relative priority, quantile-
based Preemptive Deflection compares the priority of the newly arrived packet to previously

enqueued packets. Due to resource limitations in Tofino, when implementing Quantile-PD, we
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Fig. 14. PD provides low latency as long as the gap
between queue occupancy updates is less than 2𝜇𝑠 .

calculate the quantile compared to only a subset of recently enqueued packets stored in a circular

window. In Figure 12c, we report the impact of the window size on Quantile-PD’s performance.

Our findings show that we need larger subsets to achieve better latency as the load increases. In

particular, while the QCTs converge when the window size goes over 5 packets under 55% load, we

need more than 50 packets for the latency to converge under 95% load. Unfortunately, calculating

the quantile compared to 50 packets is not feasible in programmable hardware such as Tofino

1. However, by setting the window size to 20 packets, we achieve the middle ground between

implementability and performance under various loads. In particular, with a window size of 20

packets, Quantile-PD remains implementable in programmable hardware, requiring 11 processing

stages, and achieves comparable QCT to setting the window size to 200 packets under 55% and 75%

load while increasing the 99
𝑡ℎ

percentile QCT by only 13% under 95% load.

In addition to limiting the window size, we also use packet sampling to reduce Quantile-PD’s

implementation complexity (§4). In particular, as the packets pass the switch, we store samples of

their priorities for quantile calculation. Figure 12d shows that, unlike the cases with 𝛼 and window

size, changing the sampling rate has a marginal effect on the QCTs under Quantile-PD.

6 DISCUSSION
Alternative Preemptive Deflection algorithms. Early congestion detection paradigms deployed

at the core of the network can be probabilistic [29, 42, 52, 70] or deterministic [10, 33, 80]. Prob-

abilistic techniques are more sensitive to parameters but little changes in the queue occupancy

slightly change the probability of signaling congestion. Deterministic techniques, on the other hand,

require less parameter tuning [10] but might be vulnerable to slight fluctuations as they set a hard

threshold on the queue occupancy. In addition to our original design, we also evaluate Preemptive

Deflection (PD) with a probabilistic algorithm inspired by Random Early Detection [29]. With the

probabilistic Preemptive Deflection algorithm, when a packet arrives, we enqueue it if the queue

occupancy is less than or equal to a user-defined threshold,𝑚𝑖𝑛𝑡ℎ . Otherwise, we probabilistically

deflect the packet. The deflection probability is calculated as 𝑅𝑝𝑘𝑡 [ 𝑞−𝑚𝑖𝑛𝑡ℎ
𝑄−𝑚𝑖𝑛𝑡ℎ

] where 𝑞, 𝑄 , and 𝑅𝑝𝑘𝑡
are the destination queue occupancy, the destination queue capacity, and the relative priority of

the newly-arrived packet, respectively. We set the𝑚𝑖𝑛𝑡ℎ parameter according to [10]. Figure 13

compares PD’s original design with its probabilistic counterpart. Compared to the deterministic

scheme, while performing similarly under low degrees of load, the probabilistic paradigm results in

a 2.7× and 2.3× jump in PD’s mean and 99
𝑡ℎ

percentile QCT under 95% load, respectively.

The recirculation overhead. While implementing Simple and Preemptive Deflection, we use

control packets to transfer information, such as buffer occupancy, from the egress to the ingress

pipeline. Unlike data packets, that pass the switch pipeline once, control packets continuously
recirculate inside the switch. Since control packets solely go through the recirculation ports, they

do not contribute to the queueing at other ports and leave a negligible throughput footprint.

Our testbed measurements using four server machines, generating 10 million packets per second

(Mpps) on aggregate, show no throughput footprint when we enable control packet recirculation.
Additionally, in our testbed, we observe that, with up to 64 active ports, every 72-byte control packet
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undergoes ∼ 1.7 million recirculations per second (Appendix D), resulting in a bandwidth overhead

of less than 1 Gbps. Considering that Intel Tofino 1 switches offer a robust aggregate throughput of

up to 6.4 Tbps [4], the throughput overhead of recirculating 64 control packets remains below 1%. It

is worth noting that as the number of active ports exceeds 64, the average recirculation frequency

of control packets decreases due to queueing at the recirculation port.

The queue occupancy information update frequency. In our implementations, the queue

occupancy information in the ingress pipeline is updated periodically using control packets. The
gap between updates impacts the effectiveness of our proposed algorithms in making deflection

decisions. To investigate this, we evaluate the performance of Quantile-PD and Distribution-PD

with various frequencies for updating the queue occupancy information. In the experiments with

Distribution-PD, we use the same frequencies for updating the average priority information. For

this set of experiments, we simulate the 2-tier leaf-spine datacenter, used in §5, and DCTCP as

the congestion control protocol. Figure 14 illustrates that the QCTs of Preemptive Deflection stay

steady as long as the time gap between updates is smaller than 2𝜇𝑠 which is, in fact, larger than the

gap observed in our testbed experiments under various numbers of control packets. Particularly, in
Appendix D, we illustrate that under 120 Gbps load with 512 control packets recirculating in our

testbed switch (512 active ports), the time gap between queue occupancy updates, i.e., average time

taken by each control packet to go through the switch pipeline and be recirculated, is around 1.7𝜇𝑠 .

Future directions. Our work builds on a few assumptions. First, similar to other proposals that

exploit packet prioritization [6, 8, 58, 71, 74, 80], this paper focuses on private datacenters where

security is enforced at the periphery of the network (e.g., via gateways and firewalls connecting the

datacenter to the Internet) and the hosts inside the networks are assumed to be trusted. However,

in untrusted networks that deploy packet prioritization, an adversary can starve other flows by

sending high-priority packets. Exploring the deployability of priority-based deflection techniques

in untrusted networks is a promising direction for future work.

Moreover, while we focus on output-queued switches with static queue size configurations,

shared memory switches are also popular in datacenters because of their ability to absorb bursts

using dynamic queue size thresholds [26, 61, 63]. Under this architecture, we can preemptively

deflect packets by setting the queue capacity in Equation 1 to a constant value. However, this is not

optimal for shared memory architectures due to imposing false positives and false negatives when

applying Preemptive Deflection. Lastly, we rely on extensive experimental results to evaluate our

approximation paradigms similar to the techniques that they are approximating, i.e., DIBS [82] and
Vertigo [6]. We leave tailoring Preemptive Deflection for shared memory switches and deriving

performance guarantees for packet deflection through mathematical modeling for future work.

7 RELATEDWORK
Managing traffic bursts. Many proposals attempt to mitigate burstiness. Traffic shaping, which

regulates the flow of traffic into the network by smoothing out the bursts, helps prevent congestion.

To this end, several congestion control techniques [23, 54, 55] and end-host packet schedulers [65]

employ pacing during congestion periods. While effective in reducing the bursty transmissions that

can overwhelm intermediate buffers, they fail to prevent the synchronized arrival of packets that

lead to incast traffic patterns and cause packet loss in the last hop. Load balancing, distributing traffic

across multiple paths to avoid congestion on a single path, is another area that has been studied with

network traffic burstiness in mind [9, 37, 69]. However, these techniques also struggle to address the

last-hop congestion. Finally, sub-RTT transport protocols [13] employ precise congestion signals

to react to congestion events faster, therefore reducing the queue buildups that can lead to packet

loss. We show that reactive techniques, such as packet deflection, can be practically combined with

these transports and greatly enhance performance by locally absorbing bursts.
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Exploiting packet prioritization. Aiming for low latency, several works [11, 14, 58, 74]

prioritize packets of latency-sensitive flows by deploying packet scheduling. Particularly, pFabric

[11] attempts to achieve low flow completion times by designing a flow control mechanism at

the end-hosts and applying the SRPT scheduling at the core of the network. Following the same

motivation, PIAS [14] attempts to improve latency while avoiding the need for flow size information.

To this end, PIAS suggests LAS scheduling in which the priority of a flow decreases as it sends

more packets into the network. Homa [58] advocates multi-level prioritization by applying SRPT

scheduling between flows in sender hosts and between packets at the core of the network. In

addition to imposing additional implementation complexities [8, 71, 80], such proposals fail to

prevent packet loss under bursts. To address this, priority-aware deflection paradigms, such as

Selective and Preemptive Deflection, offer better resilience against bursts of high-priority packets.

Deflection in networks. Deflection routing has been commonly used to reduce hardware

implementation costs by leveraging bufferless network-on-chip designs [27, 28]. In larger-scale

networks, deflection can be used to ensure that packets that arrive at congested [43] or failed links

[32, 51, 77] do not experience drops, by directing the traffic away from the affected paths. While

effectively used as a failover technique to recover from link failures, such techniques take more

than the lifetime of datacenter bursts [84] to apply (e.g., around 50ms in MPLS fast re-route [78]).

More recently, packet-level re-routing has been proposed to recover from switch buffer congestion

in datacenter networks [6, 70, 82]. DIBS [82] deflects packets that arrive at a full destination port

buffer to random neighboring switches. To prevent congestion collapse under high degrees of

burstiness, Vertigo [6] introduces the notion of Selective Deflection by prioritizing packets of short

flows and deflecting the packets of large flows with higher probability. Unfortunately, the above

solutions face implementability challenges in resource-limited switches.

Programmble networks. Implementing packet deflection is a challenge due to the limited

resources available in the network core. The emergence of programmable fabric enables stateful

analysis of network congestion and opens the way for implementing more intelligent forwarding

decisions. For example, programmable networks enable access to instantaneous buffer utilization

information [80], in-network telemetry [18, 24], realizing or approximating various packet sched-

uling paradigms [8, 71, 74, 80], and burstiness measurements [46, 66]. The initial proposals on

Simple Deflection [6, 82] rely on prototype FPGA implementations or software switches. On the

other hand, in this paper, we propose an approximation of Simple and Selective Deflection on PISA

pipelines that offer more flexible programming interfaces.

8 CONCLUSION
In this paper, we highlight and address the practicality challenges of packet deflection in datacenters.

In particular, we propose a random port selection algorithm and the concept of Preemptive Deflec-

tion (PD) to approximate Simple and Selective Deflection, respectively. We implement and evaluate

Simple and Preemptive Deflection using large-scale simulations and in a testbed consisting of

Tofino switches. Our results illustrate that our Simple Deflection approximation effectively defuses

bursts under light loads and performs closely to DIBS. Additionally, we observe that PD is resilient

against load and reduces the 99
𝑡ℎ

percentile latency by 60% and 71% compared to ECMP and Simple

Deflection, respectively, while achieving comparable performance to Selective Deflection.
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A ALTERNATIVE PRIORITIZATION PARADIGMS FOR PREEMPTIVE DEFLECTION
The majority of internal workloads in datacenters are RPC style [13]. In these types of workloads,

that are controlled by the service provider, flow sizes are typically known [58]. This makes Vertigo

[6] and Preemptive Deflection a good fit for RPC workloads. While using the remaining bytes of

flows for packet scheduling and deflection is shown to improve the overall latency [6, 11, 60, 76],

the flow size information might not always be available. Accordingly, we also simulate Preemptive

Deflection (PD) using the flow aging paradigm for packet prioritization. We use the Least Attained

Service (LAS) paradigm [14] for this purpose. In particular, the packets are marked with the number

of bytes successfully sent from their corresponding flows. Table 1 presents the 99
𝑡ℎ

percentile

QCT achieved by different techniques under various degrees of load. For other priority-based

techniques, such as AIFO and Vertigo (Selective Deflection), we use SRPT prioritization as their

flow aging counterparts result in higher latency. Our results show that while using flow aging,

Preemptive Deflection outperforms ECMP, DIBS, and AIFO by achieving 33%, 73%, and 88% lower

99
𝑡ℎ

percentile QCT under 95% load.

Technique → ECMP DIBS AIFO Vertigo PD

Load ↓ SRPT LAS

55% 0.033 0.013 0.151 0.014 0.014 0.016

65% 0.042 0.034 0.161 0.018 0.019 0.034

75% 0.044 0.076 0.311 0.018 0.036 0.044

85% 0.072 0.164 0.342 0.021 0.047 0.055

95% 0.113 0.281 0.641 0.023 0.086 0.076

Table 1. 99𝑡ℎ percentile QCT (seconds) for Preemptive Deflection with SRPT and LAS prioritization paradigms,
compared to other in-network alternatives.

B STATISTICAL DISTRIBUTION MAPPING FOR DISTRIBUTION-PD
To decide on the distribution that closely fits the packets’ priorities, we run Selective Deflection

(Vertigo [6]) under different combinations of background and incast workloads, record the priority

of packets that arrive at switch ports, and calculate the Sum Square Error (SSE) while fitting

different distributions to them. Table 2 presents the SSE for the uniform, normal, exponential, and

Pareto distributions. We observe that fitting an exponential distribution to the packet priorities

results in the lowest SSE under various workloads. For instance, under 35% load, fitting exponential

distribution results in 46.18%, 34.70%, and 21.98% lower errors than the uniform, normal, and Pareto

distribution, respectively.

Distribution → Uniform Normal Exponential Pareto

Workload ↓ ×10−15 ×10−15 ×10−15 ×10−15
25% background + 10% incast 135.9082 112.0216 73.14878 93.75750

25% background + 30% incast 553.0061 514.3600 366.0715 453.0258

25% background + 60% incast 810.8242 758.0309 483.1348 687.8197

Table 2. Sum square error of different distributions mapped to the priority of the packets observed by a
switch port under different workloads

C ACCURACY VS. RESOURCE CONSUMPTION TRADE-OFF
Both quantile-based and statistical methods introduce some approximation errors in estimating

the relative priority of an incoming packet. Figure 15 uses the sequence of packets presented in

Figure 2 to demonstrate the difference between using an exponential distribution and the quantile

calculation for determining the relative priority. In this example, we assume that the queue can
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accommodate six packets and estimate the quantile of every incoming packet by comparing its

priority to the window of four recently enqueued packets. We observe that using distribution

mapping results in more approximation errors compared to quantile calculation. For instance,

while only one packet has a higher priority than the last packet in the sequence, the distribution-

based technique determines its relative priority as 0.49, assigning it a 2× lower priority than the

ideal case. Meanwhile, the quantile-based method estimates the relative priority as 0.25, resulting

in 25% approximation error, compared to the ideal case. However, calculating the quantile of a

packet is more resource-intensive than mapping a statistical distribution. In particular, calculating

a packet’s quantile (using only 20 previously enqueued packets) in a Tofino switch requires 4×
more processing stages than the distribution-based method. Selecting the ideal method depends

on the switch memory and processing resources, such as the number of available stages in PISA

architecture.

D QUEUE OCCUPANCY UPDATE FREQUENCY IN THE PHYSICAL TESTBED
It takes some time for a control packet to recirculate inside the switch and transfer the most

recent queue occupancy information, and average priority information in case of distribution-based

Preemptive Deflection, from the egress to the ingress pipeline. To investigate the update frequency,

we measure the average time gap between queue occupancy information updates for a single port of

our testbed switch with various numbers of control packets, i.e., the number of active switch ports,

under 120 Gbps load. Figure 16 illustrates that with up to 64 control packets, the recirculation causes

negligible overhead in the update frequency. However, as the number of active ports increases

from 64 to 512, the average time taken for updating the queue information increases by 2.8×. As
we observed in §6, Preemptive Deflection performs effectively as long as the time gap between

information updates is less than 2𝜇𝑠 , which is the case even with 512 active ports.

E SIMPLE DEFLECTION APPROXIMATION
While implementing Simple Deflection, to randomly choose a port toward neighboring switches,

we generate a random number 𝑟 between 0 and the number of neighboring switches and deflect

the packet to the first port whose corresponding bit in the queue occupancy bitmap is 0 and is

located after the 𝑟 ’th bit of the bitmap. Here, we prove that this technique approximately selects

the ports for packet deflection uniformly at random.

Proof. To prove that our selection is performed uniformly at random, we show that the probabil-

ity of deflecting a packet to port 𝑖 , given that there exists at least one non-congested port toward the

neighboring switches (𝑌 ), 𝑃 (𝑋 = 𝑖 |𝑌 ), is equal to 1

𝑛
, 𝑛 being the number of neighboring switches.

𝑃𝑟 (𝑋 = 𝑖 |𝑌 ) = 𝑃 (𝑋 = 𝑖, 𝑌 )
𝑃 (𝑌 ) (2)

Assume that 𝑃𝑓 (𝑖) and 𝑃𝑟 (𝑖) represent the probability of the queue of the 𝑖’th port being full, and

thus its corresponding bit in the bitmap being 1, and the probability of the randomly generated
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number, 𝑟 , being equal to 𝑖 , respectively. Accordingly, the probability of deflecting a packet to port

𝑖 , while at least one of the ports is not congested, 𝑃 (𝑋 = 𝑖, 𝑌 ), is:
𝑃 (𝑋 = 𝑖, 𝑌 ) = (1 − 𝑝 𝑓 (𝑖)) [𝑃𝑟 (𝑖) + 𝑃𝑟 (𝑖 − 1)𝑃𝑓 (𝑖 − 1) + 𝑃𝑟 (𝑖 − 2)𝑃𝑓 (𝑖 − 2)𝑃𝑓 (𝑖 − 1) + ....

+ 𝑃𝑟 (1)𝑃𝑓 (1)𝑃𝑓 (2)...𝑃𝑓 (𝑖 − 1) + 𝑃𝑟 (𝑛)𝑃𝑓 (𝑛)𝑃𝑓 (1)𝑃𝑓 (2)...𝑃𝑓 (𝑖 − 1)
+ 𝑃𝑟 (𝑛 − 1)𝑃𝑓 (𝑛 − 1)𝑃𝑓 (𝑛)𝑃𝑓 (1)...𝑃𝑓 (𝑖 − 1) + ...

+ 𝑃𝑟 (𝑖 + 1)𝑃𝑓 (𝑟 + 1)𝑃𝑓 (𝑟 + 2)...𝑃𝑓 (𝑛)𝑃𝑓 (1)...𝑃𝑓 (𝑖 − 1)] (3)

In particular, the probability of port 𝑖 being chosen for packet deflection is calculated as the

probability of port 𝑖 not being congested and either 𝑟 = 𝑖 or 𝑟 ≠ 𝑖 and all the bits after the 𝑟 ’th bit

till the 𝑖’th bit in the bitmap are 1. Note that we are implementing a circular paradigm for choosing

the first 0 in the bitmap after the 𝑟 ’th bit. For instance, assume that our bitmap (𝐵) indicates 10011

for the ports toward the neighboring switches and 𝑟 = 4. In this example, the sequence at which

we search for the non-congested port is 𝐵 [4], 𝐵 [5], 𝐵 [1], 𝐵 [2] and send the packet to the port

corresponding to 𝐵 [2].
For our approximation, we assume that the load is evenly distributed through the network.

Accordingly, every port in a switch has the same probability (𝑝) of being congested.
9

𝑃𝑓 (1) = 𝑃𝑓 (2) = ... = 𝑃𝑓 (𝑛 − 1) = 𝑃𝑓 (𝑛) = 𝑝 (4)

Since we choose 𝑟 uniformly at random, the probability of choosing each bit (𝑃𝑟 (𝑖)) is equal to 1

𝑛
.

Considering equation 4, we can change equation 3 as below:

𝑃 (𝑋 = 𝑖, 𝑌 ) = (1 − 𝑝) [( 1
𝑛
) + ( 1

𝑛
)𝑝 + ( 1

𝑛
)𝑝2 + .... + ( 1

𝑛
)𝑝𝑖−1 + ( 1

𝑛
)𝑝𝑖 + ( 1

𝑛
)𝑝𝑖+1 + ... + ( 1

𝑛
)𝑝𝑛−1]

= (1 − 𝑝) [ 1
𝑛

𝑛−1∑︁
𝑗=0

𝑝 𝑗 ] = (1 − 𝑝) ( 1
𝑛
) ( 1 − 𝑝𝑛

1 − 𝑝
) = 1

𝑛
(1 − 𝑝𝑛) (5)

Using equation 4, the probability of having at least one non-congested port can be written as

𝑃 (𝑌 ) = 1 − 𝑃 (all ports being congested) = 1 − 𝑝𝑛 .

𝑃𝑟 (𝑋 = 𝑖 |𝑌 ) =
1

𝑛
(1 − 𝑝𝑛)
1 − 𝑝𝑛

=
1

𝑛
(6)

According to 6, using a circular paradigm while searching for the first zero after the 𝑟 ’th bit in

the bitmap, the probability of selecting any of the ports toward the neighboring switches is
1

𝑛
. This

shows that our technique of selecting a port for packet deflection is uniformly random. □

F DEFLECTION UNDER OTHERWORKLOAD COMBINATIONS
Figure 17 illustrates the performance of various deflection-based techniques in conjunction with two

widely deployed congestion control protocols, DCTCP and Swift, under four different combinations

of background load and incast traffic pattern. For these experiments, we simulate a two-tier

leaf-spine topology with two sets of link rates: 10/40Gbps links [6, 82] and 100 Gbps links [53,

72, 73, 79]. We observe that performance patterns under distinct workloads are consistent with

our observations in §5. Specifically, Simple Deflection performs similarly to DIBS under various

workloads. Additionally, when deployed with a window-based congestion control paradigm, such

as DCTCP, Preemptive Deflection (PD) outperforms ECMP and Simple Deflection but results in

a higher latency than Selective Deflection under load. In particular, on average, PD takes 68%

longer than Vertigo to complete the incast queries under 75% load. With Swift, on the other hand,

9
There are scenarios, in which the likelihood of congestion varies across individual ports, such as with uneven traffic

distributions. However, our empirical findings demonstrate that our approximation of Simple Deflection delivers performance

on par with that of DIBS [82]. This holds true across various workloads, link rates, and network topologies.
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(d) Swift – 100 Gbps
Fig. 17. Preemptive Deflection’s performance under other workload combinations with 10/40 Gbps and 100
Gbps links is consistent with our previous observations.

Preemptive Deflection absorbs bursts more effectively. For instance, PD+Swift results in 34% and

9% lower 99
𝑡ℎ

percentile QCT than ECMP+Swift and Vertigo+Swift, with 40/10 Gbps links under

75% load. Similarly, with 100 Gbps, Swift improves Preemptive Deflection’s query performance

compared to DCTCP due to its faster reaction to congestion. In particular, PD+Swift achieves 17%

and 30% lower mean and 99
𝑡ℎ

percentile QCT than PD+DCTCP, respectively, under 85% load.

G PAPER ARTIFACTS
The evaluations in this paper were carried out using network simulations and an Intel Tofino

testbed. You can access our codebase for the network simulations and the hardware implementation

via our GitHub repository at the following link: https://github.com/hopnets/practical_deflection.git.

This appendix provides a brief overview of each module and for more detailed information, we

direct readers to the README files available in our repository.

Network simulations. For our network simulations, we utilized Ubuntu 18.04, Omnetpp-5.6.2

[2], and the INET framework [1]. In the README file provided in our repository, you will find a

comprehensive guide covering the following essential aspects: 1) Installing project dependencies, 2)

Setting up the Omnet++ simulator, 3) Building the project modules, and 4) Executing the simulations

and extracting the results.

Hardware implementation.We also publish the code for implementing Simple and Preemptive

Deflection on Intel Tofino 1 switches [4]. Our repository comprises separate sub-directories for each

specific technique. Particularly, both the data plane and control plane implementations for Simple

Deflection, quantile-based Preemptive Deflection, and distribution-based Preemptive Deflection

can be found in their respective sub-directories inside the public artifact repository. Building the

hardware artifacts requires Intel Tofino SDE.
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